Spaces:
Paused
Paused
Update app_quant_latent.py
Browse files- app_quant_latent.py +81 -0
app_quant_latent.py
CHANGED
|
@@ -245,7 +245,88 @@ log_system_stats("AFTER PIPELINE BUILD")
|
|
| 245 |
|
| 246 |
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
@spaces.GPU
|
| 251 |
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False):
|
|
|
|
| 245 |
|
| 246 |
|
| 247 |
|
| 248 |
+
@spaces.GPU
|
| 249 |
+
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False):
|
| 250 |
+
"""
|
| 251 |
+
Returns 3 outputs for Gradio:
|
| 252 |
+
- image: PIL.Image
|
| 253 |
+
- gallery: optional latents or empty list
|
| 254 |
+
- logs: list of messages
|
| 255 |
+
"""
|
| 256 |
+
|
| 257 |
+
LOGS = []
|
| 258 |
+
image = None
|
| 259 |
+
latents = None
|
| 260 |
+
gallery = []
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
generator = torch.Generator(device).manual_seed(int(seed))
|
| 264 |
+
|
| 265 |
+
# -------------------------------
|
| 266 |
+
# Attempt advanced latent generation
|
| 267 |
+
# -------------------------------
|
| 268 |
+
try:
|
| 269 |
+
batch_size = 1
|
| 270 |
+
num_channels_latents = getattr(pipe.unet, "in_channels", None)
|
| 271 |
+
if num_channels_latents is None:
|
| 272 |
+
raise AttributeError("pipe.unet.in_channels not found, fallback to standard pipeline")
|
| 273 |
+
|
| 274 |
+
latents = pipe.prepare_latents(
|
| 275 |
+
batch_size=batch_size,
|
| 276 |
+
num_channels=num_channels_latents,
|
| 277 |
+
height=height,
|
| 278 |
+
width=width,
|
| 279 |
+
dtype=torch.float32,
|
| 280 |
+
device=device,
|
| 281 |
+
generator=generator
|
| 282 |
+
)
|
| 283 |
+
LOGS.append(f"✅ Latents prepared: {latents.shape}")
|
| 284 |
+
|
| 285 |
+
output = pipe(
|
| 286 |
+
prompt=prompt,
|
| 287 |
+
height=height,
|
| 288 |
+
width=width,
|
| 289 |
+
num_inference_steps=steps,
|
| 290 |
+
guidance_scale=guidance_scale,
|
| 291 |
+
generator=generator,
|
| 292 |
+
latents=latents
|
| 293 |
+
)
|
| 294 |
+
image = output.images[0]
|
| 295 |
+
gallery = [image] # You can also return other latent previews if needed
|
| 296 |
+
LOGS.append("✅ Advanced latent generation succeeded.")
|
| 297 |
+
|
| 298 |
+
# -------------------------------
|
| 299 |
+
# Fallback to standard pipeline
|
| 300 |
+
# -------------------------------
|
| 301 |
+
except Exception as e_latent:
|
| 302 |
+
LOGS.append(f"⚠️ Advanced latent generation failed: {e_latent}")
|
| 303 |
+
LOGS.append("🔁 Falling back to standard pipeline...")
|
| 304 |
+
try:
|
| 305 |
+
output = pipe(
|
| 306 |
+
prompt=prompt,
|
| 307 |
+
height=height,
|
| 308 |
+
width=width,
|
| 309 |
+
num_inference_steps=steps,
|
| 310 |
+
guidance_scale=guidance_scale,
|
| 311 |
+
generator=generator
|
| 312 |
+
)
|
| 313 |
+
image = output.images[0]
|
| 314 |
+
gallery = [image] # still return at least the final image
|
| 315 |
+
LOGS.append("✅ Standard pipeline generation succeeded.")
|
| 316 |
+
except Exception as e_standard:
|
| 317 |
+
LOGS.append(f"❌ Standard pipeline generation failed: {e_standard}")
|
| 318 |
+
# Fallback: return None image and empty gallery
|
| 319 |
+
image = None
|
| 320 |
+
gallery = []
|
| 321 |
+
|
| 322 |
+
# -------------------------------
|
| 323 |
+
# Return all 3 outputs
|
| 324 |
+
# -------------------------------
|
| 325 |
+
return image, gallery, LOGS
|
| 326 |
|
| 327 |
+
except Exception as e:
|
| 328 |
+
LOGS.append(f"❌ Inference failed entirely: {e}")
|
| 329 |
+
return None, [], LOGS
|
| 330 |
|
| 331 |
@spaces.GPU
|
| 332 |
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False):
|