import torch import spaces import gradio as gr import sys import platform import diffusers import transformers import psutil import os import time from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig from diffusers import ZImagePipeline, AutoModel from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig latent_history = [] # ============================================================ # LOGGING BUFFER # ============================================================ LOGS = "" def log(msg): global LOGS print(msg) LOGS += msg + "\n" return msg # ============================================================ # SYSTEM METRICS — LIVE GPU + CPU MONITORING # ============================================================ def log_system_stats(tag=""): try: log(f"\n===== šŸ”„ SYSTEM STATS {tag} =====") # ============= GPU STATS ============= if torch.cuda.is_available(): allocated = torch.cuda.memory_allocated(0) / 1e9 reserved = torch.cuda.memory_reserved(0) / 1e9 total = torch.cuda.get_device_properties(0).total_memory / 1e9 free = total - allocated log(f"šŸ’  GPU Total : {total:.2f} GB") log(f"šŸ’  GPU Allocated : {allocated:.2f} GB") log(f"šŸ’  GPU Reserved : {reserved:.2f} GB") log(f"šŸ’  GPU Free : {free:.2f} GB") # ============= CPU STATS ============ cpu = psutil.cpu_percent() ram_used = psutil.virtual_memory().used / 1e9 ram_total = psutil.virtual_memory().total / 1e9 log(f"🧠 CPU Usage : {cpu}%") log(f"🧠 RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB") except Exception as e: log(f"āš ļø Failed to log system stats: {e}") # ============================================================ # ENVIRONMENT INFO # ============================================================ log("===================================================") log("šŸ” Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER") log("===================================================\n") log(f"šŸ“Œ PYTHON VERSION : {sys.version.replace(chr(10),' ')}") log(f"šŸ“Œ PLATFORM : {platform.platform()}") log(f"šŸ“Œ TORCH VERSION : {torch.__version__}") log(f"šŸ“Œ TRANSFORMERS VERSION : {transformers.__version__}") log(f"šŸ“Œ DIFFUSERS VERSION : {diffusers.__version__}") log(f"šŸ“Œ CUDA AVAILABLE : {torch.cuda.is_available()}") log_system_stats("AT STARTUP") if not torch.cuda.is_available(): raise RuntimeError("āŒ CUDA Required") device = "cuda" gpu_id = 0 # ============================================================ # MODEL SETTINGS # ============================================================ model_cache = "./weights/" model_id = "Tongyi-MAI/Z-Image-Turbo" torch_dtype = torch.bfloat16 USE_CPU_OFFLOAD = False log("\n===================================================") log("🧠 MODEL CONFIGURATION") log("===================================================") log(f"Model ID : {model_id}") log(f"Model Cache Directory : {model_cache}") log(f"torch_dtype : {torch_dtype}") log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}") log_system_stats("BEFORE TRANSFORMER LOAD") # ============================================================ # FUNCTION TO CONVERT LATENTS TO IMAGE # ============================================================ def latent_to_image(latent): try: img_tensor = pipe.vae.decode(latent) img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1) pil_img = T.ToPILImage()(img_tensor[0]) return pil_img except Exception as e: log(f"āš ļø Failed to decode latent: {e}") return None # ============================================================ # SAFE TRANSFORMER INSPECTION # ============================================================ def inspect_transformer(model, name): log(f"\nšŸ” Inspecting {name}") try: candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"] blocks = None for attr in candidates: if hasattr(model, attr): blocks = getattr(model, attr) break if blocks is None: log(f"āš ļø No block structure found in {name}") return if hasattr(blocks, "__len__"): log(f"Total Blocks = {len(blocks)}") else: log("āš ļø Blocks exist but are not iterable") for i in range(min(10, len(blocks) if hasattr(blocks, "__len__") else 0)): log(f"Block {i} = {blocks[i].__class__.__name__}") except Exception as e: log(f"āš ļø Transformer inspect error: {e}") # ============================================================ # LOAD TRANSFORMER — WITH LIVE STATS # ============================================================ log("\n===================================================") log("šŸ”§ LOADING TRANSFORMER BLOCK") log("===================================================") log("šŸ“Œ Logging memory before load:") log_system_stats("START TRANSFORMER LOAD") try: quant_cfg = DiffusersBitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) transformer = AutoModel.from_pretrained( model_id, cache_dir=model_cache, subfolder="transformer", quantization_config=quant_cfg, torch_dtype=torch_dtype, device_map=device, ) log("āœ… Transformer loaded successfully.") except Exception as e: log(f"āŒ Transformer load failed: {e}") transformer = None log_system_stats("AFTER TRANSFORMER LOAD") if transformer: inspect_transformer(transformer, "Transformer") # ============================================================ # LOAD TEXT ENCODER # ============================================================ log("\n===================================================") log("šŸ”§ LOADING TEXT ENCODER") log("===================================================") log_system_stats("START TEXT ENCODER LOAD") try: quant_cfg2 = TransformersBitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) text_encoder = AutoModel.from_pretrained( model_id, cache_dir=model_cache, subfolder="text_encoder", quantization_config=quant_cfg2, torch_dtype=torch_dtype, device_map=device, ) log("āœ… Text encoder loaded successfully.") except Exception as e: log(f"āŒ Text encoder load failed: {e}") text_encoder = None log_system_stats("AFTER TEXT ENCODER LOAD") if text_encoder: inspect_transformer(text_encoder, "Text Encoder") # ============================================================ # BUILD PIPELINE # ============================================================ log("\n===================================================") log("šŸ”§ BUILDING PIPELINE") log("===================================================") log_system_stats("START PIPELINE BUILD") try: pipe = ZImagePipeline.from_pretrained( model_id, transformer=transformer, text_encoder=text_encoder, torch_dtype=torch_dtype, ) pipe.to(device) log("āœ… Pipeline built successfully.") except Exception as e: log(f"āŒ Pipeline build failed: {e}") pipe = None log_system_stats("AFTER PIPELINE BUILD") from PIL import Image import torch # -------------------------- # Helper: Safe latent extractor # -------------------------- def safe_get_latents(pipe, height, width, generator, device, LOGS): """ Attempts multiple ways to get latents. Returns a valid tensor even if pipeline hides UNet. """ # Try official prepare_latents try: if hasattr(pipe, "unet") and hasattr(pipe.unet, "in_channels"): num_channels = pipe.unet.in_channels latents = pipe.prepare_latents( batch_size=1, num_channels=num_channels, height=height, width=width, dtype=torch.float32, device=device, generator=generator ) LOGS.append("āœ… Latents extracted using official prepare_latents.") return latents except Exception as e: LOGS.append(f"āš ļø Official latent extraction failed: {e}") # Try hidden internal attribute try: if hasattr(pipe, "_default_latents"): LOGS.append("āš ļø Using hidden _default_latents.") return pipe._default_latents except: pass # Fallback: raw Gaussian tensor try: LOGS.append("āš ļø Using raw Gaussian latents fallback.") return torch.randn( (1, 4, height // 8, width // 8), generator=generator, device=device, dtype=torch.float32 ) except Exception as e: LOGS.append(f"āš ļø Gaussian fallback failed: {e}") LOGS.append("ā— Using CPU hard fallback latents.") return torch.randn((1, 4, height // 8, width // 8)) # -------------------------- # Main generation function # -------------------------- @spaces.GPU def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0): LOGS = [] latents = None image = None gallery = [] # placeholder image if all fails placeholder = Image.new("RGB", (width, height), color=(255, 255, 255)) try: generator = torch.Generator(device).manual_seed(int(seed)) # ------------------------------- # Try advanced latent extraction # ------------------------------- try: latents = safe_get_latents(pipe, height, width, generator, device, LOGS) output = pipe( prompt=prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, latents=latents ) image = output.images[0] gallery = [image] LOGS.append("āœ… Advanced latent pipeline succeeded.") except Exception as e: LOGS.append(f"āš ļø Latent mode failed: {e}") LOGS.append("šŸ” Switching to standard pipeline...") try: output = pipe( prompt=prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, ) image = output.images[0] gallery = [image] LOGS.append("āœ… Standard pipeline succeeded.") except Exception as e2: LOGS.append(f"āŒ Standard pipeline failed: {e2}") image = placeholder gallery = [image] return image, gallery, LOGS except Exception as e: LOGS.append(f"āŒ Total failure: {e}") return placeholder, [placeholder], LOGS @spaces.GPU def generate_image_backup(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False): """ Robust dual pipeline: - Advanced latent generation first - Fallback to standard pipeline if latent fails - Always returns final image - Returns gallery (latents or final image) and logs """ LOGS = [] image = None latents = None gallery = [] # Keep a placeholder original image (white) in case everything fails original_image = Image.new("RGB", (width, height), color=(255, 255, 255)) try: generator = torch.Generator(device).manual_seed(int(seed)) # ------------------------------- # Try advanced latent generation # ------------------------------- try: batch_size = 1 num_channels_latents = getattr(pipe.unet, "in_channels", None) if num_channels_latents is None: raise AttributeError("pipe.unet.in_channels not found, fallback to standard pipeline") latents = pipe.prepare_latents( batch_size=batch_size, num_channels=num_channels_latents, height=height, width=width, dtype=torch.float32, device=device, generator=generator ) LOGS.append(f"āœ… Latents prepared: {latents.shape}") output = pipe( prompt=prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, latents=latents ) image = output.images[0] gallery = [image] if image else [] LOGS.append("āœ… Advanced latent generation succeeded.") # ------------------------------- # Fallback to standard pipeline # ------------------------------- except Exception as e_latent: LOGS.append(f"āš ļø Advanced latent generation failed: {e_latent}") LOGS.append("šŸ” Falling back to standard pipeline...") try: output = pipe( prompt=prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator ) image = output.images[0] gallery = [image] if image else [] LOGS.append("āœ… Standard pipeline generation succeeded.") except Exception as e_standard: LOGS.append(f"āŒ Standard pipeline generation failed: {e_standard}") image = original_image # Always return some image gallery = [image] # ------------------------------- # Return all 3 outputs # ------------------------------- return image, gallery, LOGS except Exception as e: LOGS.append(f"āŒ Inference failed entirely: {e}") return original_image, [original_image], LOGS # ============================================================ # UI # ============================================================ with gr.Blocks(title="Z-Image- experiment - dont run")as demo: gr.Markdown("# **šŸš€ do not run Z-Image-Turbo — Final Image & Latents**") with gr.Row(): with gr.Column(scale=1): prompt = gr.Textbox(label="Prompt", value="boat in Ocean") height = gr.Slider(256, 2048, value=1024, step=8, label="Height") width = gr.Slider(256, 2048, value=1024, step=8, label="Width") steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps") seed = gr.Number(value=42, label="Seed") run_btn = gr.Button("Generate Image") with gr.Column(scale=1): final_image = gr.Image(label="Final Image") latent_gallery = gr.Gallery( label="Latent Steps", columns=4, height=256, preview=True ) logs_box = gr.Textbox(label="Logs", lines=15) run_btn.click( generate_image, inputs=[prompt, height, width, steps, seed], outputs=[final_image, latent_gallery, logs_box] ) demo.launch()