Spaces:
Paused
Paused
| #! /usr/bin/env python | |
| import json | |
| import os | |
| import time | |
| import click | |
| import numpy as np | |
| import torch | |
| from genmo.lib.progress import progress_bar | |
| from genmo.lib.utils import save_video | |
| from genmo.mochi_preview.pipelines_v2v_release import ( | |
| DecoderModelFactory, | |
| EncoderModelFactory, | |
| DitModelFactory, | |
| MochiMultiGPUPipeline, | |
| MochiSingleGPUPipeline, | |
| T5ModelFactory, | |
| linear_quadratic_schedule, | |
| ) | |
| import torch | |
| from torch.utils.data import Dataset, DataLoader | |
| import random | |
| import string | |
| from lightning.pytorch import LightningDataModule | |
| from genmo.mochi_preview.vae.models import Encoder, add_fourier_features | |
| from genmo.mochi_preview.vae.latent_dist import LatentDistribution | |
| import torchvision | |
| from einops import rearrange | |
| from safetensors.torch import load_file | |
| from genmo.mochi_preview.pipelines import DecoderModelFactory, decode_latents_tiled_spatial, decode_latents, decode_latents_tiled_full | |
| from genmo.mochi_preview.vae.vae_stats import dit_latents_to_vae_latents | |
| pipeline = None | |
| model_dir_path = None | |
| num_gpus = torch.cuda.device_count() | |
| cpu_offload = False | |
| dit_path = None | |
| def configure_model(model_dir_path_, dit_path_, cpu_offload_): | |
| global model_dir_path, dit_path, cpu_offload | |
| model_dir_path = model_dir_path_ | |
| dit_path = dit_path_ | |
| cpu_offload = cpu_offload_ | |
| def load_model(): | |
| global num_gpus, pipeline, model_dir_path, dit_path | |
| if pipeline is None: | |
| MOCHI_DIR = model_dir_path | |
| print(f"Launching with {num_gpus} GPUs. If you want to force single GPU mode use CUDA_VISIBLE_DEVICES=0.") | |
| klass = MochiSingleGPUPipeline if num_gpus == 1 else MochiMultiGPUPipeline | |
| kwargs = dict( | |
| text_encoder_factory=T5ModelFactory(), | |
| dit_factory=DitModelFactory( | |
| model_path=dit_path, | |
| model_dtype="bf16" | |
| ), | |
| decoder_factory=DecoderModelFactory( | |
| model_path=f"{MOCHI_DIR}/decoder.safetensors", | |
| ), | |
| encoder_factory=EncoderModelFactory( | |
| model_path=f"{MOCHI_DIR}/encoder.safetensors", | |
| ), | |
| ) | |
| if num_gpus > 1: | |
| assert not cpu_offload, "CPU offload not supported in multi-GPU mode" | |
| kwargs["world_size"] = num_gpus | |
| else: | |
| kwargs["cpu_offload"] = cpu_offload | |
| # kwargs["decode_type"] = "tiled_full" | |
| kwargs["decode_type"] = "tiled_spatial" | |
| pipeline = klass(**kwargs) | |
| def generate_video( | |
| prompt, | |
| negative_prompt, | |
| width, | |
| height, | |
| num_frames, | |
| seed, | |
| cfg_scale, | |
| num_inference_steps, | |
| data_path, | |
| input_cond=None, | |
| ): | |
| load_model() | |
| global dit_path | |
| # sigma_schedule should be a list of floats of length (num_inference_steps + 1), | |
| # such that sigma_schedule[0] == 1.0 and sigma_schedule[-1] == 0.0 and monotonically decreasing. | |
| sigma_schedule = linear_quadratic_schedule(num_inference_steps, 0.025) | |
| cfg_schedule = [cfg_scale] * num_inference_steps | |
| args = { | |
| "height": height, | |
| "width": width, | |
| "num_frames": num_frames, | |
| "sigma_schedule": sigma_schedule, | |
| "cfg_schedule": cfg_schedule, | |
| "num_inference_steps": num_inference_steps, | |
| # We *need* flash attention to batch cfg | |
| # and it's only worth doing in a high-memory regime (assume multiple GPUs) | |
| "batch_cfg": False, | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "seed": seed, | |
| "data_path": data_path, | |
| } | |
| # Handle different input types | |
| if input_cond is not None: | |
| args["condition_image"] = input_cond["tensor"] | |
| args["condition_frame_idx"] = input_cond["cond_position"] | |
| args["noise_multiplier"] = input_cond["noise_multiplier"] | |
| # print(args) | |
| with progress_bar(type="tqdm"): | |
| final_frames = pipeline(**args) | |
| final_frames = final_frames[0] | |
| assert isinstance(final_frames, np.ndarray) | |
| assert final_frames.dtype == np.float32 | |
| # Create a results directory based on model name and timestamp | |
| model_name = os.path.basename(dit_path.split('/')[-2]) | |
| checkpoint_name = dit_path.split('/')[-1].split('train_loss')[0] | |
| # Use datetime format for timestamp_dir | |
| from datetime import datetime | |
| timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| cond_position = input_cond["cond_position"] | |
| results_base_dir = "./video_test_demos_results" | |
| results_dir = os.path.join(results_base_dir, f"{model_name}_{checkpoint_name}_dawn_{cond_position}pos_{num_inference_steps}steps_0sigma") | |
| os.makedirs(results_dir, exist_ok=True) | |
| # Extract filename from input_cond if available | |
| filename_prefix = "" | |
| if isinstance(input_cond, dict) and "filename" in input_cond: | |
| filename_prefix = f"{os.path.basename(input_cond['filename']).split('.')[0]}_" | |
| output_path = os.path.join( | |
| results_dir, | |
| f"{filename_prefix}{timestamp_str}.mp4" | |
| ) | |
| save_video(final_frames, output_path) | |
| json_path = os.path.splitext(output_path)[0] + ".json" | |
| # Save args to JSON but remove input_cond tensor and convert non-serializable objects | |
| json_args = args.copy() | |
| # Handle input_cond for JSON serialization | |
| if "input_cond" in json_args: | |
| json_args["input_cond"] = None | |
| # Handle condition_image for JSON serialization | |
| if "condition_image" in json_args: | |
| json_args["condition_image"] = "Image tensor (removed for JSON)" | |
| if isinstance(input_cond, dict): | |
| json_args["input_filename"] = input_cond.get("filename", None) | |
| if "cond_position" in input_cond: | |
| json_args["condition_frame_idx"] = input_cond["cond_position"] | |
| # Convert sigma_schedule and cfg_schedule from tensors to lists if needed | |
| if isinstance(json_args["sigma_schedule"], torch.Tensor): | |
| json_args["sigma_schedule"] = json_args["sigma_schedule"].tolist() | |
| if isinstance(json_args["cfg_schedule"], torch.Tensor): | |
| json_args["cfg_schedule"] = json_args["cfg_schedule"].tolist() | |
| # Handle prompt if it's a tensor or other non-serializable object | |
| if not isinstance(json_args["prompt"], (str, type(None))): | |
| if hasattr(json_args["prompt"], "tolist"): | |
| json_args["prompt"] = "Tensor prompt (converted to string for JSON)" | |
| else: | |
| json_args["prompt"] = str(json_args["prompt"]) | |
| # Handle negative_prompt if it's a tensor | |
| if not isinstance(json_args["negative_prompt"], (str, type(None))): | |
| if hasattr(json_args["negative_prompt"], "tolist"): | |
| json_args["negative_prompt"] = "Tensor negative prompt (converted to string for JSON)" | |
| else: | |
| json_args["negative_prompt"] = str(json_args["negative_prompt"]) | |
| json.dump(json_args, open(json_path, "w"), indent=4) | |
| return output_path | |
| from textwrap import dedent | |
| def generate_cli( | |
| prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, model_dir, | |
| dit_path, cpu_offload, data_path, video_dir, prompt_dir, cond_position, noise_multiplier | |
| ): | |
| configure_model(model_dir, dit_path, cpu_offload) | |
| # Case 1: Text to video generation | |
| if video_dir is None: | |
| click.echo("Running text-to-video generation with provided prompt") | |
| with torch.inference_mode(): | |
| output = generate_video( | |
| prompt, | |
| negative_prompt, | |
| width, | |
| height, | |
| num_frames, | |
| seed, | |
| cfg_scale, | |
| num_steps, | |
| data_path, | |
| input_cond=None, | |
| ) | |
| click.echo(f"Video generated at: {output}") | |
| return | |
| config = dict( | |
| prune_bottlenecks=[False, False, False, False, False], | |
| has_attentions=[False, True, True, True, True], | |
| affine=True, | |
| bias=True, | |
| input_is_conv_1x1=True, | |
| padding_mode="replicate", | |
| ) | |
| # Create VAE encoder | |
| encoder = Encoder( | |
| in_channels=15, | |
| base_channels=64, | |
| channel_multipliers=[1, 2, 4, 6], | |
| num_res_blocks=[3, 3, 4, 6, 3], | |
| latent_dim=12, | |
| temporal_reductions=[1, 2, 3], | |
| spatial_reductions=[2, 2, 2], | |
| **config, | |
| ) | |
| device = torch.device("cuda:0") | |
| encoder = encoder.to(device, memory_format=torch.channels_last_3d) | |
| encoder.load_state_dict(load_file(f"{model_dir}/encoder.safetensors")) | |
| encoder.eval() | |
| # Import required libraries | |
| import cv2 | |
| import torchvision.transforms as transforms | |
| from PIL import Image | |
| def process_video(video_path, width, height, num_frames): | |
| """Process a video file and return a tensor of normalized frames""" | |
| if not os.path.isfile(video_path): | |
| click.echo(f"Video file not found: {video_path}") | |
| return None | |
| click.echo(f"Processing video: {video_path}") | |
| cap = cv2.VideoCapture(video_path) | |
| frames = [] | |
| # Read frames from video | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| # Convert BGR to RGB | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| frames.append(frame) | |
| # Truncate if longer than 81 frames | |
| if len(frames) >= num_frames: | |
| break | |
| cap.release() | |
| if not frames: | |
| click.echo(f"Error: Could not read frames from video {video_path}") | |
| return None | |
| print(f"Loaded {len(frames)} frames from video {os.path.basename(video_path)}") | |
| # Process frames - crop and resize | |
| processed_frames = [] | |
| transform = transforms.Compose([ | |
| transforms.ToTensor(), | |
| ]) | |
| target_ratio = width / height | |
| for frame in frames: | |
| # Convert to PIL for easier processing | |
| pil_frame = Image.fromarray(frame) | |
| # Calculate crop dimensions to maintain aspect ratio | |
| current_ratio = pil_frame.width / pil_frame.height | |
| if current_ratio > target_ratio: | |
| # Frame is wider than target ratio - crop width | |
| new_width = int(pil_frame.height * target_ratio) | |
| x1 = (pil_frame.width - new_width) // 2 | |
| pil_frame = pil_frame.crop((x1, 0, x1 + new_width, pil_frame.height)) | |
| else: | |
| # Frame is taller than target ratio - crop height | |
| new_height = int(pil_frame.width / target_ratio) | |
| y1 = (pil_frame.height - new_height) // 2 | |
| pil_frame = pil_frame.crop((0, y1, pil_frame.width, y1 + new_height)) | |
| # Resize the cropped frame | |
| pil_frame = pil_frame.resize((width, height), Image.LANCZOS) | |
| # Convert to tensor | |
| frame_tensor = transform(pil_frame) | |
| processed_frames.append(frame_tensor) | |
| # Stack frames into a single tensor [T, C, H, W] | |
| video_tensor = torch.stack(processed_frames) | |
| # Normalize to [-1, 1] | |
| video_tensor = video_tensor * 2 - 1 | |
| # Add batch dimension [1, T, C, H, W] | |
| video_tensor = video_tensor.unsqueeze(0) | |
| return video_tensor, os.path.basename(video_path) | |
| # Process video if provided | |
| if video_dir and os.path.isfile(video_dir): | |
| video_result = process_video(video_dir, width, height, num_frames) | |
| if not video_result: | |
| click.echo("Failed to process video") | |
| return | |
| video_tensor, video_filename = video_result | |
| video_tensor = video_tensor.permute(0, 2, 1, 3, 4) | |
| # Add Fourier features and encode to latent | |
| video_tensor = add_fourier_features(video_tensor.to(device)) | |
| with torch.inference_mode(): | |
| with torch.autocast("cuda", dtype=torch.bfloat16): | |
| t0 = time.time() | |
| # import pdb; pdb.set_trace() | |
| encoder = encoder.to(device) | |
| ldist = encoder(video_tensor) | |
| video_tensor = ldist.sample() | |
| print(f"Encoding took {time.time() - t0:.2f} seconds") | |
| # Move encoder to CPU to free GPU memory | |
| torch.cuda.empty_cache() | |
| encoder = encoder.to("cpu") | |
| del ldist | |
| # Parse string representations of position list to actual list | |
| cond_positions = eval(cond_position) | |
| # Package input for generate_video | |
| input_cond = { | |
| "tensor": video_tensor, | |
| "filename": video_filename, | |
| "cond_position": cond_positions, | |
| "noise_multiplier": noise_multiplier | |
| } | |
| with torch.inference_mode(): | |
| output = generate_video( | |
| prompt, | |
| negative_prompt, | |
| width, | |
| height, | |
| num_frames, | |
| seed, | |
| cfg_scale, | |
| num_steps, | |
| data_path, | |
| input_cond, | |
| ) | |
| click.echo(f"Video generated at: {output}") | |
| return | |
| click.echo("No valid video file provided") | |
| return | |
| if __name__ == "__main__": | |
| generate_cli() | |