Qwen3-Coder-Next / app_gguf.py
rahul7star's picture
Update app_gguf.py
810730b verified
import spaces
import os
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
import llama_cpp
print(llama_cpp.__file__)
print(llama_cpp.__version__)
huggingface_token = os.getenv("HF_TOKEN")
hf_hub_download(
repo_id="unsloth/Qwen3-Coder-Next-GGUF",
filename="Qwen3-Coder-Next-Q4_K_S.gguf",
local_dir="./models"
)
# hf_hub_download(
# repo_id="bartowski/gemma-2-27b-it-GGUF",
# filename="gemma-2-27b-it-Q5_K_M.gguf",
# local_dir="./models"
# )
# hf_hub_download(
# repo_id="google/gemma-2-2b-it-GGUF",
# filename="2b_it_v2.gguf",
# local_dir="./models",
# token=huggingface_token
# )
# hf_hub_download(
# repo_id="unsloth/Qwen3-Coder-Next-GGUF",
# filename="Qwen3-Coder-Next-IQ4_NL.gguf",
# local_dir="./models",
# token=huggingface_token
# )
llm = None
llm_model = None
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
global llm
global llm_model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
import gradio as gr
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Dropdown(
[
"unsloth/Qwen3-Coder-Next-GGUF"
],
value="Qwen Coder",
label="Model",
),
gr.Textbox(
value="You are a helpful assistant.",
label="System message",
),
gr.Slider(1, 4096, value=2048, step=1, label="Max tokens"),
gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
gr.Slider(0, 100, value=40, step=1, label="Top-k"),
gr.Slider(0.0, 2.0, value=1.1, step=0.1, label="Repetition penalty"),
],
title="Qwen Coder Next",
description=description,
)
# demo.launch()
if __name__ == "__main__":
demo.launch()