Update optimization.py
Browse files- optimization.py +22 -13
optimization.py
CHANGED
|
@@ -36,10 +36,12 @@ INDUCTOR_CONFIGS = {
|
|
| 36 |
'triton.cudagraphs': True,
|
| 37 |
}
|
| 38 |
|
|
|
|
|
|
|
| 39 |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 40 |
print("[optimize_pipeline_] Starting pipeline optimization")
|
| 41 |
|
| 42 |
-
#
|
| 43 |
pipeline.text_encoder = pipeline.text_encoder.cpu()
|
| 44 |
pipeline.text_encoder = torchao.autoquant(
|
| 45 |
torch.compile(pipeline.text_encoder, mode='max-autotune'),
|
|
@@ -49,6 +51,7 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 49 |
|
| 50 |
@spaces.GPU(duration=1500)
|
| 51 |
def compile_transformer():
|
|
|
|
| 52 |
print("[compile_transformer] Loading LoRA weights")
|
| 53 |
pipeline.load_lora_weights(
|
| 54 |
"DeepBeepMeep/Wan2.2",
|
|
@@ -63,23 +66,30 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 63 |
)
|
| 64 |
pipeline.set_adapters(["lightning", "lightning_2"], adapter_weights=[1.0, 1.0])
|
| 65 |
|
|
|
|
| 66 |
print("[compile_transformer] Fusing LoRA weights")
|
| 67 |
pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3.0, components=["transformer"])
|
| 68 |
pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1.0, components=["transformer_2"])
|
| 69 |
pipeline.unload_lora_weights()
|
| 70 |
|
| 71 |
-
|
|
|
|
| 72 |
with torch.inference_mode():
|
| 73 |
with capture_component_call(pipeline, 'transformer') as call:
|
| 74 |
pipeline(*args, **kwargs)
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
#
|
| 80 |
pipeline.transformer = pipeline.transformer.to("cuda")
|
| 81 |
pipeline.transformer_2 = pipeline.transformer_2.to("cuda")
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
compiled_transformer = torchao.autoquant(
|
| 84 |
torch.compile(pipeline.transformer, mode='max-autotune'),
|
| 85 |
qtensor_class_list=DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
|
@@ -89,28 +99,26 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 89 |
qtensor_class_list=DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
| 90 |
)
|
| 91 |
|
| 92 |
-
#
|
| 93 |
-
hidden_states: torch.Tensor = call.kwargs['hidden_states']
|
| 94 |
-
hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
|
| 95 |
-
|
| 96 |
def combined_transformer_1(*a, **k):
|
| 97 |
if k['hidden_states'].shape[-1] > k['hidden_states'].shape[-2]:
|
| 98 |
return compiled_transformer(*a, **k)
|
| 99 |
-
k_mod = k
|
| 100 |
k_mod['hidden_states'] = hidden_states_transposed
|
| 101 |
return compiled_transformer(*a, **k_mod)
|
| 102 |
|
| 103 |
def combined_transformer_2(*a, **k):
|
| 104 |
if k['hidden_states'].shape[-1] > k['hidden_states'].shape[-2]:
|
| 105 |
return compiled_transformer_2(*a, **k)
|
| 106 |
-
k_mod = k
|
| 107 |
k_mod['hidden_states'] = hidden_states_transposed
|
| 108 |
return compiled_transformer_2(*a, **k_mod)
|
| 109 |
|
| 110 |
pipeline.transformer.forward = combined_transformer_1
|
| 111 |
-
drain_module_parameters(pipeline.transformer)
|
| 112 |
-
|
| 113 |
pipeline.transformer_2.forward = combined_transformer_2
|
|
|
|
|
|
|
|
|
|
| 114 |
drain_module_parameters(pipeline.transformer_2)
|
| 115 |
|
| 116 |
print("[compile_transformer] Transformers autoquantized, compiled, and patched")
|
|
@@ -118,3 +126,4 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 118 |
|
| 119 |
cl1, cl2 = compile_transformer()
|
| 120 |
print("[optimize_pipeline_] Optimization complete")
|
|
|
|
|
|
| 36 |
'triton.cudagraphs': True,
|
| 37 |
}
|
| 38 |
|
| 39 |
+
from torchao.quantization import DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
| 40 |
+
|
| 41 |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 42 |
print("[optimize_pipeline_] Starting pipeline optimization")
|
| 43 |
|
| 44 |
+
# --- TEXT ENCODER ---
|
| 45 |
pipeline.text_encoder = pipeline.text_encoder.cpu()
|
| 46 |
pipeline.text_encoder = torchao.autoquant(
|
| 47 |
torch.compile(pipeline.text_encoder, mode='max-autotune'),
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU(duration=1500)
|
| 53 |
def compile_transformer():
|
| 54 |
+
# --- LOAD LORAS ---
|
| 55 |
print("[compile_transformer] Loading LoRA weights")
|
| 56 |
pipeline.load_lora_weights(
|
| 57 |
"DeepBeepMeep/Wan2.2",
|
|
|
|
| 66 |
)
|
| 67 |
pipeline.set_adapters(["lightning", "lightning_2"], adapter_weights=[1.0, 1.0])
|
| 68 |
|
| 69 |
+
# --- FUSE & UNLOAD ---
|
| 70 |
print("[compile_transformer] Fusing LoRA weights")
|
| 71 |
pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3.0, components=["transformer"])
|
| 72 |
pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1.0, components=["transformer_2"])
|
| 73 |
pipeline.unload_lora_weights()
|
| 74 |
|
| 75 |
+
# --- DUMMY FORWARD ---
|
| 76 |
+
print("[compile_transformer] Capturing shapes")
|
| 77 |
with torch.inference_mode():
|
| 78 |
with capture_component_call(pipeline, 'transformer') as call:
|
| 79 |
pipeline(*args, **kwargs)
|
| 80 |
|
| 81 |
+
hidden_states: torch.Tensor = call.kwargs['hidden_states']
|
| 82 |
+
hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
|
| 83 |
|
| 84 |
+
# --- MOVE TO CUDA BEFORE AUTOQUANT ---
|
| 85 |
pipeline.transformer = pipeline.transformer.to("cuda")
|
| 86 |
pipeline.transformer_2 = pipeline.transformer_2.to("cuda")
|
| 87 |
|
| 88 |
+
# Sanity: Ensure parameters exist before quantization
|
| 89 |
+
assert any(p.numel() > 0 for p in pipeline.transformer.parameters()), "Transformer has no params!"
|
| 90 |
+
assert any(p.numel() > 0 for p in pipeline.transformer_2.parameters()), "Transformer_2 has no params!"
|
| 91 |
+
|
| 92 |
+
# --- AUTOQUANT + COMPILE ---
|
| 93 |
compiled_transformer = torchao.autoquant(
|
| 94 |
torch.compile(pipeline.transformer, mode='max-autotune'),
|
| 95 |
qtensor_class_list=DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
|
|
|
| 99 |
qtensor_class_list=DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
| 100 |
)
|
| 101 |
|
| 102 |
+
# --- PATCH FOR LANDSCAPE/PORTRAIT ---
|
|
|
|
|
|
|
|
|
|
| 103 |
def combined_transformer_1(*a, **k):
|
| 104 |
if k['hidden_states'].shape[-1] > k['hidden_states'].shape[-2]:
|
| 105 |
return compiled_transformer(*a, **k)
|
| 106 |
+
k_mod = dict(k)
|
| 107 |
k_mod['hidden_states'] = hidden_states_transposed
|
| 108 |
return compiled_transformer(*a, **k_mod)
|
| 109 |
|
| 110 |
def combined_transformer_2(*a, **k):
|
| 111 |
if k['hidden_states'].shape[-1] > k['hidden_states'].shape[-2]:
|
| 112 |
return compiled_transformer_2(*a, **k)
|
| 113 |
+
k_mod = dict(k)
|
| 114 |
k_mod['hidden_states'] = hidden_states_transposed
|
| 115 |
return compiled_transformer_2(*a, **k_mod)
|
| 116 |
|
| 117 |
pipeline.transformer.forward = combined_transformer_1
|
|
|
|
|
|
|
| 118 |
pipeline.transformer_2.forward = combined_transformer_2
|
| 119 |
+
|
| 120 |
+
# --- NOW drain parameters to save VRAM ---
|
| 121 |
+
drain_module_parameters(pipeline.transformer)
|
| 122 |
drain_module_parameters(pipeline.transformer_2)
|
| 123 |
|
| 124 |
print("[compile_transformer] Transformers autoquantized, compiled, and patched")
|
|
|
|
| 126 |
|
| 127 |
cl1, cl2 = compile_transformer()
|
| 128 |
print("[optimize_pipeline_] Optimization complete")
|
| 129 |
+
|