Spaces:
Runtime error
Runtime error
Almost done
Browse files
app.py
CHANGED
|
@@ -27,6 +27,7 @@ image = Image.open("./test0.jpeg")
|
|
| 27 |
labels = dataset.features['ner_tags'].feature.names
|
| 28 |
id2label = {v: k for v, k in enumerate(labels)}
|
| 29 |
|
|
|
|
| 30 |
label_ints = np.random.randint(0, len(ImageColor.colormap.items()), 61)
|
| 31 |
label_color_pil = [k for k,_ in ImageColor.colormap.items()]
|
| 32 |
label_color = [label_color_pil[i] for i in label_ints]
|
|
@@ -78,24 +79,20 @@ def process_image(image):
|
|
| 78 |
return image
|
| 79 |
|
| 80 |
|
| 81 |
-
title = "
|
| 82 |
-
description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks.
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
#css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
|
| 89 |
-
#css = ".output_image {height: 600px !important}, .input_image {height: 300px !important}"
|
| 90 |
|
| 91 |
-
css = ".image-preview {height: auto !important;}"
|
| 92 |
|
| 93 |
iface = gr.Interface(fn=process_image,
|
| 94 |
-
inputs=gr.inputs.Image(type="pil"
|
| 95 |
outputs=gr.outputs.Image(type="pil", label="annotated image"),
|
| 96 |
title=title,
|
| 97 |
description=description,
|
| 98 |
article=article,
|
| 99 |
examples=examples)
|
| 100 |
-
#css=css)
|
| 101 |
iface.launch(debug=True)
|
|
|
|
| 27 |
labels = dataset.features['ner_tags'].feature.names
|
| 28 |
id2label = {v: k for v, k in enumerate(labels)}
|
| 29 |
|
| 30 |
+
#Need to get discrete colors for each labels
|
| 31 |
label_ints = np.random.randint(0, len(ImageColor.colormap.items()), 61)
|
| 32 |
label_color_pil = [k for k,_ in ImageColor.colormap.items()]
|
| 33 |
label_color = [label_color_pil[i] for i in label_ints]
|
|
|
|
| 79 |
return image
|
| 80 |
|
| 81 |
|
| 82 |
+
title = "Extracting Receipts: LayoutLMv3"
|
| 83 |
+
description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. \
|
| 84 |
+
This particular model is fine-tuned from [LayoutLMv3](https://huggingface.co/microsoft/layoutlmv3-base) on Consolidated Receipt Dataset ([CORD] (https://github.com/clovaai/cord), a dataset of receipts. If you search the π€ Hugging Face hub you will see other related models fine-tuned for other documents. This model is trained using fine-tuning to look for entities around menu items, subtotal, and total prices. To perform your own fine tuning, take a look at the [notebook by Niels](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3). \
|
| 85 |
+
To try it out, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. To see the output bigger, right-click on it, select 'Open image in new tab', and use your browser's zoom feature. "
|
| 86 |
|
| 87 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.08387' target='_blank'>LayoutLMv3: Multi-modal Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
|
| 88 |
+
examples =[['test0.jpeg'],['test1.jpeg'],['test2.jpeg']]
|
|
|
|
|
|
|
| 89 |
|
|
|
|
| 90 |
|
| 91 |
iface = gr.Interface(fn=process_image,
|
| 92 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 93 |
outputs=gr.outputs.Image(type="pil", label="annotated image"),
|
| 94 |
title=title,
|
| 95 |
description=description,
|
| 96 |
article=article,
|
| 97 |
examples=examples)
|
|
|
|
| 98 |
iface.launch(debug=True)
|