Spaces:
Runtime error
Runtime error
Raphael
commited on
App v1
Browse filesSigned-off-by: Raphael <oOraph@users.noreply.github.com>
- .gitignore +1 -0
- app.py +252 -0
- packages.txt +1 -0
- requirements.txt +15 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
app.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import moviepy.editor as mp
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pysrt
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import pipeline
|
| 14 |
+
import yt_dlp
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
|
| 18 |
+
|
| 19 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', force=True)
|
| 20 |
+
|
| 21 |
+
LOG = logging.getLogger(__name__)
|
| 22 |
+
CLIP_SECONDS = 20
|
| 23 |
+
SLICES = 4
|
| 24 |
+
SLICE_DURATION = CLIP_SECONDS / SLICES
|
| 25 |
+
# At most 6 mins
|
| 26 |
+
MAX_CHUNKS = 45
|
| 27 |
+
BASEDIR = '/tmp/processed'
|
| 28 |
+
|
| 29 |
+
os.makedirs(BASEDIR, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
asr_kwargs = {
|
| 32 |
+
"task": "automatic-speech-recognition",
|
| 33 |
+
"model": "openai/whisper-medium.en"
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
translator_kwargs = {
|
| 37 |
+
"task": "translation_en_to_fr",
|
| 38 |
+
"model": "Helsinki-NLP/opus-mt-en-fr"
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
summarizer_kwargs = {
|
| 42 |
+
"task": "summarization",
|
| 43 |
+
"model": "facebook/bart-large-cnn"
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
if torch.cuda.is_available():
|
| 47 |
+
LOG.info("GPU available")
|
| 48 |
+
|
| 49 |
+
asr_kwargs['device'] = 'cuda:0'
|
| 50 |
+
translator_kwargs['device'] = 'cuda:0'
|
| 51 |
+
summarizer_kwargs['device'] = 'cuda:0'
|
| 52 |
+
|
| 53 |
+
# All three models should fit together on a single T4 GPU
|
| 54 |
+
|
| 55 |
+
LOG.info("Fetching ASR model from the Hub if not already there")
|
| 56 |
+
asr = pipeline(**asr_kwargs)
|
| 57 |
+
|
| 58 |
+
LOG.info("Fetching translation model from the Hub if not already there")
|
| 59 |
+
translator = pipeline(**translator_kwargs)
|
| 60 |
+
|
| 61 |
+
LOG.info("Fetching summarization model from the Hub if not already there")
|
| 62 |
+
summarizer = pipeline(**summarizer_kwargs)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def demo(url: str, translate: bool):
|
| 66 |
+
basedir = BASEDIR
|
| 67 |
+
video_path, video = download(url, os.path.join(basedir, 'video.mp4'))
|
| 68 |
+
audio_clips(video, basedir)
|
| 69 |
+
srt_file, summary = process_video(basedir, video.duration, translate)
|
| 70 |
+
return summary, srt_file, [video_path, srt_file]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def download(url, dst):
|
| 74 |
+
LOG.info("Downloading provided url %s", url)
|
| 75 |
+
|
| 76 |
+
opts = {
|
| 77 |
+
'skip_download': False,
|
| 78 |
+
'overwrites': True,
|
| 79 |
+
'format': 'mp4',
|
| 80 |
+
'outtmpl': {'default': dst}
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
with yt_dlp.YoutubeDL(opts) as dl:
|
| 84 |
+
dl.download([url])
|
| 85 |
+
|
| 86 |
+
return dst, mp.VideoFileClip(dst)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def audiodir(basedir):
|
| 90 |
+
return os.path.join(basedir, 'audio')
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def audio_clips(video: mp.VideoFileClip, basedir: str):
|
| 94 |
+
|
| 95 |
+
LOG.info("Building audio clips")
|
| 96 |
+
|
| 97 |
+
clips_dir = audiodir(basedir)
|
| 98 |
+
shutil.rmtree(clips_dir, ignore_errors=True)
|
| 99 |
+
os.makedirs(clips_dir, exist_ok=True)
|
| 100 |
+
|
| 101 |
+
audio = video.audio
|
| 102 |
+
end = audio.duration
|
| 103 |
+
|
| 104 |
+
digits = int(math.log(end / CLIP_SECONDS, 10)) + 1
|
| 105 |
+
|
| 106 |
+
for idx, i in enumerate(range(0, int(end), CLIP_SECONDS)):
|
| 107 |
+
sub_end = min(i+CLIP_SECONDS, end)
|
| 108 |
+
# print(sub_end)
|
| 109 |
+
sub_clip = audio.subclip(t_start=i, t_end=sub_end)
|
| 110 |
+
audio_file = os.path.join(clips_dir, f"audio_{idx:0{digits}d}" + ".ogg")
|
| 111 |
+
# audio_file = os.path.join(AUDIO_CLIPS, "audio_" + str(idx))
|
| 112 |
+
sub_clip.write_audiofile(audio_file, fps=16000)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def process_video(basedir: str, duration, translate: bool):
|
| 116 |
+
audio_dir = audiodir(basedir)
|
| 117 |
+
transcriptions = transcription(audio_dir, duration)
|
| 118 |
+
subs = translation(transcriptions, translate)
|
| 119 |
+
srt_file = build_srt_clips(subs, basedir)
|
| 120 |
+
summary = summarize(transcriptions, translate)
|
| 121 |
+
return srt_file, summary
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def transcription(audio_dir: str, duration):
|
| 125 |
+
LOG.info("Audio transcription")
|
| 126 |
+
# Not exact, nvm, doesn't need to be
|
| 127 |
+
chunks = int(duration / CLIP_SECONDS + 1)
|
| 128 |
+
chunks = min(chunks, MAX_CHUNKS)
|
| 129 |
+
|
| 130 |
+
LOG.debug("Loading audio clips dataset")
|
| 131 |
+
|
| 132 |
+
dataset = load_dataset("audiofolder", data_dir=audio_dir)
|
| 133 |
+
dataset = dataset['train']
|
| 134 |
+
dataset = dataset['audio'][0:chunks]
|
| 135 |
+
|
| 136 |
+
start = time.time()
|
| 137 |
+
transcriptions = []
|
| 138 |
+
for i, d in enumerate(np.array_split(dataset, 5)):
|
| 139 |
+
d = list(d)
|
| 140 |
+
LOG.info("ASR batch %d / 5, samples %d", i, len(d))
|
| 141 |
+
t = asr(d, max_new_tokens=10000)
|
| 142 |
+
transcriptions.extend(t)
|
| 143 |
+
|
| 144 |
+
transcriptions = [t['text'] for t in transcriptions]
|
| 145 |
+
elapsed = time.time() - start
|
| 146 |
+
LOG.info("Transcription done, elapsed %.2f seconds", elapsed)
|
| 147 |
+
return transcriptions
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def translation(transcriptions, translate):
|
| 151 |
+
if translate:
|
| 152 |
+
LOG.info("Performing translation")
|
| 153 |
+
start = time.time()
|
| 154 |
+
translations = translator(transcriptions)
|
| 155 |
+
translations = [t['translation_text'] for t in translations]
|
| 156 |
+
elapsed = time.time() - start
|
| 157 |
+
LOG.info("Translation done, elapsed %.2f seconds", elapsed)
|
| 158 |
+
else:
|
| 159 |
+
translations = transcriptions
|
| 160 |
+
return translations
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def summarize(transcriptions, translate):
|
| 164 |
+
LOG.info("Generating video summary")
|
| 165 |
+
whole_text = ' '.join(transcriptions).strip()
|
| 166 |
+
word_count = len(whole_text.split())
|
| 167 |
+
summary = summarizer(whole_text)
|
| 168 |
+
# min_length=word_count // 4 + 1,
|
| 169 |
+
# max_length=word_count // 2 + 1)
|
| 170 |
+
summary = translation([summary[0]['summary_text']], translate)[0]
|
| 171 |
+
return summary
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def subs_to_timed_segments(subtitles: list[str]):
|
| 175 |
+
LOG.info("Building srt segments")
|
| 176 |
+
all_chunks = []
|
| 177 |
+
for sub in subtitles:
|
| 178 |
+
chunks = np.array_split(sub.split(' '), SLICES)
|
| 179 |
+
all_chunks.extend(chunks)
|
| 180 |
+
|
| 181 |
+
subs = []
|
| 182 |
+
for c in all_chunks:
|
| 183 |
+
c = ' '.join(c)
|
| 184 |
+
subs.append(c)
|
| 185 |
+
|
| 186 |
+
segments = []
|
| 187 |
+
for i, c in enumerate(subs):
|
| 188 |
+
segments.append({
|
| 189 |
+
'text': c.strip(),
|
| 190 |
+
'start': i * SLICE_DURATION,
|
| 191 |
+
'end': (i + 1) * SLICE_DURATION
|
| 192 |
+
})
|
| 193 |
+
|
| 194 |
+
return segments
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def build_srt_clips(subs, basedir):
|
| 198 |
+
|
| 199 |
+
LOG.info("Generating subtitles")
|
| 200 |
+
segments = subs_to_timed_segments(subs)
|
| 201 |
+
|
| 202 |
+
LOG.info("Building srt clips")
|
| 203 |
+
max_text_len = 30
|
| 204 |
+
subtitles = pysrt.SubRipFile()
|
| 205 |
+
first = True
|
| 206 |
+
for segment in segments:
|
| 207 |
+
start = segment['start'] * 1000
|
| 208 |
+
if first:
|
| 209 |
+
start += 3000
|
| 210 |
+
first = False
|
| 211 |
+
end = segment['end'] * 1000
|
| 212 |
+
text = segment['text']
|
| 213 |
+
text = text.strip()
|
| 214 |
+
if len(text) < max_text_len:
|
| 215 |
+
o = pysrt.SubRipItem()
|
| 216 |
+
o.start = pysrt.SubRipTime(0, 0, 0, start)
|
| 217 |
+
o.end = pysrt.SubRipTime(0, 0, 0, end)
|
| 218 |
+
o.text = text
|
| 219 |
+
subtitles.append(o)
|
| 220 |
+
else:
|
| 221 |
+
# Just split in two, should be ok in most cases
|
| 222 |
+
words = text.split()
|
| 223 |
+
o = pysrt.SubRipItem()
|
| 224 |
+
o.text = ' '.join(words[0:len(words)//2])
|
| 225 |
+
o.start = pysrt.SubRipTime(0, 0, 0, start)
|
| 226 |
+
chkpt = (start + end) / 2
|
| 227 |
+
o.end = pysrt.SubRipTime(0, 0, 0, chkpt)
|
| 228 |
+
subtitles.append(o)
|
| 229 |
+
o = pysrt.SubRipItem()
|
| 230 |
+
o.text = ' '.join(words[len(words)//2:])
|
| 231 |
+
o.start = pysrt.SubRipTime(0, 0, 0, chkpt)
|
| 232 |
+
o.end = pysrt.SubRipTime(0, 0, 0, end)
|
| 233 |
+
subtitles.append(o)
|
| 234 |
+
|
| 235 |
+
srt_path = os.path.join(basedir, 'video.srt')
|
| 236 |
+
subtitles.save(srt_path, encoding='utf-8')
|
| 237 |
+
LOG.info("Subtitles saved in srt file %s", srt_path)
|
| 238 |
+
return srt_path
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
iface = gr.Interface(
|
| 242 |
+
fn=demo,
|
| 243 |
+
inputs=[
|
| 244 |
+
gr.Text(value="https://youtu.be/tiZFewofSLM", label="English video url"),
|
| 245 |
+
gr.Checkbox(value=True, label='Translate to French')],
|
| 246 |
+
outputs=[
|
| 247 |
+
gr.Text(label="Video summary"),
|
| 248 |
+
gr.File(label="SRT file"),
|
| 249 |
+
gr.Video(label="Video with subtitles"),
|
| 250 |
+
])
|
| 251 |
+
|
| 252 |
+
iface.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
imagemagick
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
jupyter
|
| 2 |
+
notebook
|
| 3 |
+
numpy
|
| 4 |
+
torch
|
| 5 |
+
transformers
|
| 6 |
+
hf_transfer
|
| 7 |
+
moviepy
|
| 8 |
+
yt-dlp
|
| 9 |
+
datasets
|
| 10 |
+
soundfile
|
| 11 |
+
librosa
|
| 12 |
+
sentencepiece
|
| 13 |
+
pysrt
|
| 14 |
+
gradio
|
| 15 |
+
sacremoses
|