Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,39 +3,48 @@ import torch
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import PyPDF2
|
| 5 |
|
| 6 |
-
#
|
| 7 |
model_name = "ibm-granite/granite-3.2-2b-instruct"
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
model_name,
|
| 11 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 12 |
-
device_map="auto" if torch.cuda.is_available() else None
|
|
|
|
| 13 |
)
|
| 14 |
|
| 15 |
# Ensure pad token is set
|
| 16 |
if tokenizer.pad_token is None:
|
| 17 |
tokenizer.pad_token = tokenizer.eos_token
|
| 18 |
|
| 19 |
-
# ---------- Core Functions ----------
|
| 20 |
-
def generate_response(prompt, max_length=1024):
|
| 21 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
# Slice out only the generated part
|
| 36 |
-
response_ids = outputs[0][inputs["input_ids"].shape[-1]:]
|
| 37 |
-
response = tokenizer.decode(response_ids, skip_special_tokens=True)
|
| 38 |
-
return response.strip()
|
| 39 |
|
| 40 |
def extract_text_from_pdf(pdf_file):
|
| 41 |
if pdf_file is None:
|
|
@@ -44,70 +53,26 @@ def extract_text_from_pdf(pdf_file):
|
|
| 44 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 45 |
text = ""
|
| 46 |
for page in pdf_reader.pages:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
-
return f"Error reading PDF: {str(e)}"
|
|
|
|
| 52 |
|
| 53 |
def eco_tips_generator(problem_keywords):
|
|
|
|
|
|
|
| 54 |
prompt = (
|
| 55 |
f"Generate practical and actionable eco-friendly tips for sustainable living "
|
| 56 |
f"related to: {problem_keywords}. Provide specific solutions and suggestions:"
|
| 57 |
)
|
| 58 |
-
return generate_response(prompt, max_length=
|
|
|
|
| 59 |
|
| 60 |
def policy_summarization(pdf_file, policy_text):
|
| 61 |
if pdf_file is not None:
|
| 62 |
content = extract_text_from_pdf(pdf_file)
|
| 63 |
-
summary_prompt = (
|
| 64 |
-
f"Summarize the following policy document and extract the most important points, "
|
| 65 |
-
f"key provisions, and implications:\n\n{content}"
|
| 66 |
-
)
|
| 67 |
else:
|
| 68 |
-
|
| 69 |
-
f"Summarize the following policy document and extract the most important points, "
|
| 70 |
-
f"key provisions, and implications:\n\n{policy_text}"
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
return generate_response(summary_prompt, max_length=1200)
|
| 74 |
-
|
| 75 |
-
# ---------- Gradio Interface ----------
|
| 76 |
-
with gr.Blocks() as app:
|
| 77 |
-
gr.Markdown("# 🌍 Eco Assistant & Policy Analyzer")
|
| 78 |
-
|
| 79 |
-
with gr.Tabs():
|
| 80 |
-
with gr.TabItem("♻️ Eco Tips Generator"):
|
| 81 |
-
with gr.Row():
|
| 82 |
-
with gr.Column():
|
| 83 |
-
keywords_input = gr.Textbox(
|
| 84 |
-
label="Environmental Problem/Keywords",
|
| 85 |
-
placeholder="e.g., plastic, solar, water waste, energy saving...",
|
| 86 |
-
lines=3
|
| 87 |
-
)
|
| 88 |
-
generate_tips_btn = gr.Button("Generate Eco Tips")
|
| 89 |
-
|
| 90 |
-
with gr.Column():
|
| 91 |
-
tips_output = gr.Textbox(label="Sustainable Living Tips", lines=15)
|
| 92 |
-
|
| 93 |
-
generate_tips_btn.click(eco_tips_generator, inputs=keywords_input, outputs=tips_output)
|
| 94 |
-
|
| 95 |
-
with gr.TabItem("📑 Policy Summarization"):
|
| 96 |
-
with gr.Row():
|
| 97 |
-
with gr.Column():
|
| 98 |
-
pdf_upload = gr.File(label="Upload Policy PDF", file_types=[".pdf"])
|
| 99 |
-
policy_text_input = gr.Textbox(
|
| 100 |
-
label="Or paste policy text here",
|
| 101 |
-
placeholder="Paste policy document text...",
|
| 102 |
-
lines=5
|
| 103 |
-
)
|
| 104 |
-
summarize_btn = gr.Button("Summarize Policy")
|
| 105 |
-
|
| 106 |
-
with gr.Column():
|
| 107 |
-
summary_output = gr.Textbox(label="Policy Summary & Key Points", lines=20)
|
| 108 |
-
|
| 109 |
-
summarize_btn.click(policy_summarization, inputs=[pdf_upload, policy_text_input], outputs=summary_output)
|
| 110 |
-
|
| 111 |
-
# Launch app
|
| 112 |
-
if __name__ == "__main__":
|
| 113 |
-
app.launch(share=True)
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import PyPDF2
|
| 5 |
|
| 6 |
+
# ----------------- Model Setup -----------------
|
| 7 |
model_name = "ibm-granite/granite-3.2-2b-instruct"
|
| 8 |
+
|
| 9 |
+
# Some models require trust_remote_code
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 11 |
+
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
model_name,
|
| 14 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 15 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 16 |
+
trust_remote_code=True
|
| 17 |
)
|
| 18 |
|
| 19 |
# Ensure pad token is set
|
| 20 |
if tokenizer.pad_token is None:
|
| 21 |
tokenizer.pad_token = tokenizer.eos_token
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# ----------------- Core Functions -----------------
|
| 25 |
+
def generate_response(prompt, max_length=512):
|
| 26 |
+
try:
|
| 27 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=256)
|
| 28 |
+
|
| 29 |
+
if torch.cuda.is_available():
|
| 30 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 31 |
+
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = model.generate(
|
| 34 |
+
**inputs,
|
| 35 |
+
max_length=max_length,
|
| 36 |
+
temperature=0.7,
|
| 37 |
+
do_sample=True,
|
| 38 |
+
pad_token_id=tokenizer.eos_token_id
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Slice only the generated continuation
|
| 42 |
+
response_ids = outputs[0][inputs["input_ids"].shape[-1]:]
|
| 43 |
+
response = tokenizer.decode(response_ids, skip_special_tokens=True)
|
| 44 |
+
return response.strip()
|
| 45 |
+
except Exception as e:
|
| 46 |
+
return f"⚠️ Error generating response: {str(e)}"
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def extract_text_from_pdf(pdf_file):
|
| 50 |
if pdf_file is None:
|
|
|
|
| 53 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 54 |
text = ""
|
| 55 |
for page in pdf_reader.pages:
|
| 56 |
+
page_text = page.extract_text()
|
| 57 |
+
if page_text:
|
| 58 |
+
text += page_text + "\n"
|
| 59 |
+
return text.strip()
|
| 60 |
except Exception as e:
|
| 61 |
+
return f"⚠️ Error reading PDF: {str(e)}"
|
| 62 |
+
|
| 63 |
|
| 64 |
def eco_tips_generator(problem_keywords):
|
| 65 |
+
if not problem_keywords.strip():
|
| 66 |
+
return "⚠️ Please enter some keywords."
|
| 67 |
prompt = (
|
| 68 |
f"Generate practical and actionable eco-friendly tips for sustainable living "
|
| 69 |
f"related to: {problem_keywords}. Provide specific solutions and suggestions:"
|
| 70 |
)
|
| 71 |
+
return generate_response(prompt, max_length=400)
|
| 72 |
+
|
| 73 |
|
| 74 |
def policy_summarization(pdf_file, policy_text):
|
| 75 |
if pdf_file is not None:
|
| 76 |
content = extract_text_from_pdf(pdf_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
else:
|
| 78 |
+
content = polic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|