Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, SamModel, SamProcessor
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
# Set device to GPU if available
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
|
| 12 |
+
# Load Florence BLIP model (Public Model - No Authentication Required)
|
| 13 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 14 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
| 15 |
+
|
| 16 |
+
# Load SAM model (Public Model - No Authentication Required)
|
| 17 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 18 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
|
| 19 |
+
|
| 20 |
+
def process_image(image):
|
| 21 |
+
start_time = time.time()
|
| 22 |
+
|
| 23 |
+
# Convert and resize image
|
| 24 |
+
pil_image = Image.fromarray(image).resize((512, 512)) # Resize to optimize processing
|
| 25 |
+
print("β
Image loaded and resized.")
|
| 26 |
+
|
| 27 |
+
# Generate caption using Florence
|
| 28 |
+
try:
|
| 29 |
+
inputs = processor(pil_image, return_tensors="pt").to(device)
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
out = model.generate(**inputs)
|
| 32 |
+
description = processor.decode(out[0], skip_special_tokens=True)
|
| 33 |
+
print(f"π Florence Captioning done in {time.time() - start_time:.2f} sec")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"β Error in Florence: {e}")
|
| 36 |
+
return "Failed to generate description.", image
|
| 37 |
+
|
| 38 |
+
# Process Image for SAM
|
| 39 |
+
try:
|
| 40 |
+
encoding = sam_processor(images=pil_image, return_tensors="pt").to(device)
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = sam_model(**encoding)
|
| 43 |
+
|
| 44 |
+
# Extract segmentation mask
|
| 45 |
+
mask = outputs.pred_masks[0, 0].cpu().numpy()
|
| 46 |
+
mask_overlay = image.copy()
|
| 47 |
+
mask_overlay[mask > 0.5] = [0, 255, 0] # Green overlay for segmentation
|
| 48 |
+
print(f"π¨ SAM Segmentation done in {time.time() - start_time:.2f} sec")
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"β Error in SAM: {e}")
|
| 51 |
+
return description, image
|
| 52 |
+
|
| 53 |
+
return description, mask_overlay
|
| 54 |
+
|
| 55 |
+
# Gradio Interface
|
| 56 |
+
demo = gr.Interface(
|
| 57 |
+
fn=process_image,
|
| 58 |
+
inputs=gr.Image(type="numpy"),
|
| 59 |
+
outputs=[gr.Textbox(label="Image Description"), gr.Image(label="Segmented Image")],
|
| 60 |
+
title="Florence + SAM Image Processing",
|
| 61 |
+
description="Upload an image to get its description using Florence and segmentation using SAM (loaded from Hugging Face)."
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
if __name__ == "__main__":
|
| 65 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|