added images
Browse files- main.py +105 -3
- requirements.txt +3 -1
main.py
CHANGED
|
@@ -3,13 +3,15 @@ import re
|
|
| 3 |
import time
|
| 4 |
|
| 5 |
import dotenv
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
import requests
|
| 8 |
import schedule
|
| 9 |
import srsly
|
| 10 |
from bs4 import BeautifulSoup
|
| 11 |
-
from datasets import Dataset, load_dataset
|
| 12 |
from huggingface_hub import create_repo, login, whoami
|
|
|
|
| 13 |
from retry import retry
|
| 14 |
from tqdm.auto import tqdm
|
| 15 |
|
|
@@ -17,7 +19,7 @@ dotenv.load_dotenv()
|
|
| 17 |
login(token=os.environ.get("HF_TOKEN"))
|
| 18 |
|
| 19 |
hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
|
| 20 |
-
HF_REPO_ID = f"{hf_user}/zotero-
|
| 21 |
|
| 22 |
|
| 23 |
########################################################
|
|
@@ -64,7 +66,7 @@ def get_zotero_items(debug=False):
|
|
| 64 |
print(f"# items fetched {len(items)}")
|
| 65 |
|
| 66 |
if debug:
|
| 67 |
-
if len(items) >
|
| 68 |
break
|
| 69 |
|
| 70 |
return items
|
|
@@ -309,6 +311,98 @@ def parse_markdown_content(md_content, arxiv_id):
|
|
| 309 |
return parsed
|
| 310 |
|
| 311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
########################################################
|
| 313 |
### HF UPLOAD
|
| 314 |
########################################################
|
|
@@ -324,6 +418,10 @@ def upload_to_hf(abstract_df, contents_df, processed_arxiv_ids):
|
|
| 324 |
exist_ok=True,
|
| 325 |
)
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
# push id_to_abstract
|
| 328 |
abstract_ds = Dataset.from_pandas(abstract_df)
|
| 329 |
abstract_ds.push_to_hub(repo_id, "abstracts", token=os.environ.get("HF_TOKEN"))
|
|
@@ -369,6 +467,10 @@ def main():
|
|
| 369 |
|
| 370 |
processed_arxiv_ids = set()
|
| 371 |
for item in arxiv_items:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
try:
|
| 373 |
item["contents"] = parse_html_content(item["raw_html"])
|
| 374 |
processed_arxiv_ids.add(item["arxiv_id"])
|
|
|
|
| 3 |
import time
|
| 4 |
|
| 5 |
import dotenv
|
| 6 |
+
import fitz # PyMuPDF
|
| 7 |
import pandas as pd
|
| 8 |
import requests
|
| 9 |
import schedule
|
| 10 |
import srsly
|
| 11 |
from bs4 import BeautifulSoup
|
| 12 |
+
from datasets import Dataset, Image, load_dataset
|
| 13 |
from huggingface_hub import create_repo, login, whoami
|
| 14 |
+
from PIL import Image as PILImage
|
| 15 |
from retry import retry
|
| 16 |
from tqdm.auto import tqdm
|
| 17 |
|
|
|
|
| 19 |
login(token=os.environ.get("HF_TOKEN"))
|
| 20 |
|
| 21 |
hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
|
| 22 |
+
HF_REPO_ID = f"{hf_user}/zotero-articles"
|
| 23 |
|
| 24 |
|
| 25 |
########################################################
|
|
|
|
| 66 |
print(f"# items fetched {len(items)}")
|
| 67 |
|
| 68 |
if debug:
|
| 69 |
+
if len(items) > 200:
|
| 70 |
break
|
| 71 |
|
| 72 |
return items
|
|
|
|
| 311 |
return parsed
|
| 312 |
|
| 313 |
|
| 314 |
+
########################################################
|
| 315 |
+
### Image Dataset
|
| 316 |
+
########################################################
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def download_arxiv_pdf(arxiv_id):
|
| 320 |
+
arxiv_id = arxiv_id.split("v")[0]
|
| 321 |
+
url = f"https://arxiv.org/pdf/{arxiv_id}.pdf"
|
| 322 |
+
response = requests.get(url)
|
| 323 |
+
if response.status_code == 200:
|
| 324 |
+
return response.content
|
| 325 |
+
else:
|
| 326 |
+
raise Exception(f"Failed to download PDF. Status code: {response.status_code}")
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def pdf_to_jpegs(pdf_content, output_folder):
|
| 330 |
+
# Create output folder if it doesn't exist
|
| 331 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 332 |
+
|
| 333 |
+
# Open the PDF
|
| 334 |
+
doc = fitz.open(stream=pdf_content, filetype="pdf")
|
| 335 |
+
|
| 336 |
+
# Iterate through pages
|
| 337 |
+
for page_num in range(len(doc)):
|
| 338 |
+
page = doc.load_page(page_num)
|
| 339 |
+
|
| 340 |
+
# Convert page to image
|
| 341 |
+
pix = page.get_pixmap()
|
| 342 |
+
|
| 343 |
+
# Save image as JPEG
|
| 344 |
+
image_path = os.path.join(output_folder, f"page_{page_num + 1}.jpg")
|
| 345 |
+
pix.save(image_path)
|
| 346 |
+
# print(f"Saved {image_path}")
|
| 347 |
+
|
| 348 |
+
doc.close()
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def save_arxiv_article_images(arxiv_id):
|
| 352 |
+
output_folder = os.path.join("data", "arxiv_images", arxiv_id)
|
| 353 |
+
try:
|
| 354 |
+
pdf_content = download_arxiv_pdf(arxiv_id)
|
| 355 |
+
pdf_to_jpegs(pdf_content, output_folder)
|
| 356 |
+
except Exception as e:
|
| 357 |
+
print(f"An error occurred: {str(e)}")
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def create_hf_image_dataset(base_dir):
|
| 361 |
+
data = []
|
| 362 |
+
|
| 363 |
+
# Walk through the directory
|
| 364 |
+
for root, dirs, files in os.walk(base_dir):
|
| 365 |
+
for file in files:
|
| 366 |
+
if file.endswith(".jpg"):
|
| 367 |
+
# Extract arxiv_id from the path
|
| 368 |
+
arxiv_id = os.path.basename(root)
|
| 369 |
+
|
| 370 |
+
# Extract page number from the filename
|
| 371 |
+
match = re.search(r"page_(\d+)", file)
|
| 372 |
+
if match:
|
| 373 |
+
page_number = int(match.group(1))
|
| 374 |
+
else:
|
| 375 |
+
continue # Skip if page number can't be extracted
|
| 376 |
+
|
| 377 |
+
# Full path to the image
|
| 378 |
+
image_path = os.path.join(root, file)
|
| 379 |
+
|
| 380 |
+
# Open the image to get its size
|
| 381 |
+
with PILImage.open(image_path) as img:
|
| 382 |
+
width, height = img.size
|
| 383 |
+
|
| 384 |
+
# Add the data
|
| 385 |
+
data.append(
|
| 386 |
+
{"image": image_path, "arxiv_id": arxiv_id, "page_number": page_number, "width": width, "height": height}
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
# Create the dataset
|
| 390 |
+
dataset = Dataset.from_dict(
|
| 391 |
+
{
|
| 392 |
+
"image": [d["image"] for d in data],
|
| 393 |
+
"arxiv_id": [d["arxiv_id"] for d in data],
|
| 394 |
+
"page_number": [d["page_number"] for d in data],
|
| 395 |
+
"width": [d["width"] for d in data],
|
| 396 |
+
"height": [d["height"] for d in data],
|
| 397 |
+
}
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
# Cast the image column to Image
|
| 401 |
+
dataset = dataset.cast_column("image", Image())
|
| 402 |
+
|
| 403 |
+
return dataset
|
| 404 |
+
|
| 405 |
+
|
| 406 |
########################################################
|
| 407 |
### HF UPLOAD
|
| 408 |
########################################################
|
|
|
|
| 418 |
exist_ok=True,
|
| 419 |
)
|
| 420 |
|
| 421 |
+
# upload image dataset
|
| 422 |
+
img_ds = create_hf_image_dataset("data/arxiv_images")
|
| 423 |
+
img_ds.push_to_hub(repo_id, "images", token=os.environ.get("HF_TOKEN"))
|
| 424 |
+
|
| 425 |
# push id_to_abstract
|
| 426 |
abstract_ds = Dataset.from_pandas(abstract_df)
|
| 427 |
abstract_ds.push_to_hub(repo_id, "abstracts", token=os.environ.get("HF_TOKEN"))
|
|
|
|
| 467 |
|
| 468 |
processed_arxiv_ids = set()
|
| 469 |
for item in arxiv_items:
|
| 470 |
+
# download images --
|
| 471 |
+
save_arxiv_article_images(item["arxiv_id"])
|
| 472 |
+
|
| 473 |
+
# parse html
|
| 474 |
try:
|
| 475 |
item["contents"] = parse_html_content(item["raw_html"])
|
| 476 |
processed_arxiv_ids.add(item["arxiv_id"])
|
requirements.txt
CHANGED
|
@@ -10,4 +10,6 @@ python-dotenv
|
|
| 10 |
beautifulsoup4
|
| 11 |
retry
|
| 12 |
pandas
|
| 13 |
-
datasets
|
|
|
|
|
|
|
|
|
| 10 |
beautifulsoup4
|
| 11 |
retry
|
| 12 |
pandas
|
| 13 |
+
datasets
|
| 14 |
+
PyMuPDF
|
| 15 |
+
pillow
|