Spaces:
Paused
Paused
Rishi Desai
commited on
Commit
·
524c601
1
Parent(s):
aa6982c
readme + trigger word
Browse files- README.md +20 -40
- caption.py +1 -1
README.md
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
-
|
| 15 |
-
-
|
| 16 |
|
| 17 |
## Installation
|
| 18 |
|
|
@@ -20,7 +20,6 @@ AutoCaptioner creates detailed, principled image captions for your LoRA dataset.
|
|
| 20 |
- Python 3.11 or higher
|
| 21 |
- [Together API](https://together.ai/) account and API key
|
| 22 |
|
| 23 |
-
|
| 24 |
### Setup
|
| 25 |
|
| 26 |
1. Create the virtual environment:
|
|
@@ -30,9 +29,7 @@ AutoCaptioner creates detailed, principled image captions for your LoRA dataset.
|
|
| 30 |
python -m pip install -r requirements.txt
|
| 31 |
```
|
| 32 |
|
| 33 |
-
2.
|
| 34 |
-
|
| 35 |
-
3. Run inference on one set of images:
|
| 36 |
|
| 37 |
```bash
|
| 38 |
python main.py --input examples/ --output output/
|
|
@@ -43,8 +40,7 @@ AutoCaptioner creates detailed, principled image captions for your LoRA dataset.
|
|
| 43 |
|
| 44 |
- `--input` (str): Directory containing images to caption.
|
| 45 |
- `--output` (str): Directory to save images and captions (defaults to input directory).
|
| 46 |
-
- `--
|
| 47 |
-
- `--batch_images` (flag): Process images in batches by category.
|
| 48 |
</details>
|
| 49 |
|
| 50 |
|
|
@@ -55,31 +51,15 @@ Launch a user-friendly web interface for captioning and prompt optimization:
|
|
| 55 |
python demo.py
|
| 56 |
```
|
| 57 |
|
| 58 |
-
###
|
| 59 |
-
|
| 60 |
-
- High-accuracy image captioning with detailed contextual descriptions
|
| 61 |
-
- Consistent character descriptions when using the outfit flag
|
| 62 |
-
- Batch processing for large image collections
|
| 63 |
-
- Optimized for AI model training datasets
|
| 64 |
-
- Web interface for easy use
|
| 65 |
-
|
| 66 |
-
## How It Works
|
| 67 |
-
|
| 68 |
-
AutoCaptioner leverages the Llama-4-Maverick model through the Together AI platform to:
|
| 69 |
-
1. Analyze the visual content of your images
|
| 70 |
-
2. Generate detailed, structured captions
|
| 71 |
-
3. Save the captions as text files alongside your images
|
| 72 |
-
|
| 73 |
-
## Notes
|
| 74 |
- Images are processed individually in standard mode
|
| 75 |
- For large collections, batch processing by category is recommended
|
| 76 |
- Each caption is saved as a .txt file with the same name as the image
|
| 77 |
|
| 78 |
### Troubleshooting
|
| 79 |
|
| 80 |
-
- **API errors**: Ensure your Together API key is set
|
| 81 |
-
- **
|
| 82 |
-
- **Memory issues**: For very large images, try processing in smaller batches
|
| 83 |
|
| 84 |
### Examples
|
| 85 |
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: LoRACaptioner
|
| 3 |
+
emoji: 🤠
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.25.2
|
| 8 |
+
app_file: demo.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# LoRACaptioner
|
| 13 |
+
|
| 14 |
+
- **Image Captioning**: Automatically generate detailed and structured captions for your LoRA dataset.
|
| 15 |
+
- **Prompt Optimization**: Enhance prompts during inference to achieve high-quality outputs.
|
| 16 |
|
| 17 |
## Installation
|
| 18 |
|
|
|
|
| 20 |
- Python 3.11 or higher
|
| 21 |
- [Together API](https://together.ai/) account and API key
|
| 22 |
|
|
|
|
| 23 |
### Setup
|
| 24 |
|
| 25 |
1. Create the virtual environment:
|
|
|
|
| 29 |
python -m pip install -r requirements.txt
|
| 30 |
```
|
| 31 |
|
| 32 |
+
2. Run inference on one set of images:
|
|
|
|
|
|
|
| 33 |
|
| 34 |
```bash
|
| 35 |
python main.py --input examples/ --output output/
|
|
|
|
| 40 |
|
| 41 |
- `--input` (str): Directory containing images to caption.
|
| 42 |
- `--output` (str): Directory to save images and captions (defaults to input directory).
|
| 43 |
+
- `--batch_images` (flag): Caption images in batches by category.
|
|
|
|
| 44 |
</details>
|
| 45 |
|
| 46 |
|
|
|
|
| 51 |
python demo.py
|
| 52 |
```
|
| 53 |
|
| 54 |
+
### Notes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
- Images are processed individually in standard mode
|
| 56 |
- For large collections, batch processing by category is recommended
|
| 57 |
- Each caption is saved as a .txt file with the same name as the image
|
| 58 |
|
| 59 |
### Troubleshooting
|
| 60 |
|
| 61 |
+
- **API errors**: Ensure your Together API key is set and has funds
|
| 62 |
+
- **Image formats**: Only .png, .jpg, .jpeg, and .webp files are supported
|
|
|
|
| 63 |
|
| 64 |
### Examples
|
| 65 |
|
caption.py
CHANGED
|
@@ -4,7 +4,7 @@ import os
|
|
| 4 |
from together import Together
|
| 5 |
|
| 6 |
MODEL_ID = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
| 7 |
-
TRIGGER_WORD = "
|
| 8 |
|
| 9 |
def get_system_prompt():
|
| 10 |
return f"""Automated Image Captioning (for LoRA Training)
|
|
|
|
| 4 |
from together import Together
|
| 5 |
|
| 6 |
MODEL_ID = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
| 7 |
+
TRIGGER_WORD = "tr1gg3r"
|
| 8 |
|
| 9 |
def get_system_prompt():
|
| 10 |
return f"""Automated Image Captioning (for LoRA Training)
|