Spaces:
Runtime error
Runtime error
Joel Lundgren
commited on
Commit
·
a22ca8b
1
Parent(s):
215c956
onnx and ui improvements
Browse files- app.py +212 -43
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image, ImageDraw
|
| 3 |
-
from transformers import pipeline, AutoTokenizer
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
# Load the object detection pipeline
|
|
@@ -49,27 +50,71 @@ def detect_objects(image):
|
|
| 49 |
|
| 50 |
return annotated_image, detected_objects_str
|
| 51 |
|
| 52 |
-
# Cache for LLM models and tokenizers
|
| 53 |
llm_cache = {}
|
| 54 |
|
| 55 |
-
def get_llm(model_name):
|
| 56 |
-
|
| 57 |
-
|
|
|
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
"gemma3:1b": "google/gemma-3-1b-it",
|
| 61 |
-
"qwen3:0.6b": "Qwen/Qwen3-0.6B-Instruct"
|
| 62 |
}
|
| 63 |
-
hf_model_name = model_map[model_name]
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
return model, tokenizer
|
| 74 |
|
| 75 |
def update_user_prompt(detected_objects, current_prompt):
|
|
@@ -83,40 +128,115 @@ def update_user_prompt(detected_objects, current_prompt):
|
|
| 83 |
|
| 84 |
return new_prompt
|
| 85 |
|
| 86 |
-
def generate_text(
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
messages = [
|
| 90 |
{"role": "system", "content": system_prompt},
|
| 91 |
{"role": "user", "content": user_prompt},
|
| 92 |
]
|
| 93 |
|
| 94 |
-
|
| 95 |
"tokenize": False,
|
| 96 |
-
"add_generation_prompt": True
|
| 97 |
}
|
| 98 |
-
|
| 99 |
-
if
|
| 100 |
-
|
| 101 |
|
| 102 |
text = tokenizer.apply_chat_template(
|
| 103 |
messages,
|
| 104 |
-
**
|
| 105 |
)
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
]
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
with gr.Blocks() as demo:
|
| 122 |
gr.Markdown("# Black Box: Object Detection and LLM Chat")
|
|
@@ -130,10 +250,25 @@ with gr.Blocks() as demo:
|
|
| 130 |
|
| 131 |
with gr.Tab("LLM Chat"):
|
| 132 |
model_selector = gr.Dropdown(choices=["gemma3:1b", "qwen3:0.6b"], label="Select LLM Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
system_prompt_input = gr.Textbox(label="System Prompt", value="You are a helpful assistant.")
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
# Connect object detection components
|
| 139 |
object_detection_button.click(
|
|
@@ -142,18 +277,52 @@ with gr.Blocks() as demo:
|
|
| 142 |
outputs=[detected_image_output, detected_objects_output]
|
| 143 |
)
|
| 144 |
|
| 145 |
-
# Connect LLM components
|
| 146 |
-
|
| 147 |
-
fn=
|
| 148 |
-
inputs=[
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
# Connect detected objects to user
|
| 153 |
detected_objects_output.change(
|
| 154 |
fn=update_user_prompt,
|
| 155 |
inputs=[detected_objects_output, user_prompt_input],
|
| 156 |
-
outputs=user_prompt_input
|
| 157 |
)
|
| 158 |
|
| 159 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image, ImageDraw
|
| 3 |
+
from transformers import pipeline, AutoTokenizer
|
| 4 |
+
from optimum.onnxruntime import ORTModelForCausalLM
|
| 5 |
import torch
|
| 6 |
|
| 7 |
# Load the object detection pipeline
|
|
|
|
| 50 |
|
| 51 |
return annotated_image, detected_objects_str
|
| 52 |
|
| 53 |
+
# Cache for LLM models and tokenizers (ONNX Runtime)
|
| 54 |
llm_cache = {}
|
| 55 |
|
| 56 |
+
def get_llm(model_name, preferred_file: str | None = None):
|
| 57 |
+
cache_key = (model_name, preferred_file or "auto")
|
| 58 |
+
if cache_key in llm_cache:
|
| 59 |
+
return llm_cache[cache_key]
|
| 60 |
|
| 61 |
+
# ONNX model repositories on the Hub
|
| 62 |
+
onnx_repo_map = {
|
| 63 |
+
"gemma3:1b": "onnx-community/gemma-3-1b-it-ONNX-GQA",
|
| 64 |
+
"qwen3:0.6b": "onnx-community/Qwen3-0.6B-ONNX",
|
| 65 |
+
}
|
| 66 |
+
# Original repos to fetch correct tokenizer + chat templates
|
| 67 |
+
tokenizer_repo_map = {
|
| 68 |
"gemma3:1b": "google/gemma-3-1b-it",
|
| 69 |
+
"qwen3:0.6b": "Qwen/Qwen3-0.6B-Instruct",
|
| 70 |
}
|
|
|
|
| 71 |
|
| 72 |
+
onnx_repo = onnx_repo_map[model_name]
|
| 73 |
+
tokenizer_repo = tokenizer_repo_map[model_name]
|
| 74 |
+
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_repo)
|
| 76 |
+
|
| 77 |
+
# Try a few common ONNX filenames found in community repos to avoid the
|
| 78 |
+
# "Too many ONNX model files were found" ambiguity.
|
| 79 |
+
candidate_files = [
|
| 80 |
+
"model_q4.onnx",
|
| 81 |
+
"model_quantized.onnx",
|
| 82 |
+
"model_int8.onnx",
|
| 83 |
+
"model.onnx",
|
| 84 |
+
]
|
| 85 |
|
| 86 |
+
model = None
|
| 87 |
+
last_err = None
|
| 88 |
+
ordered = candidate_files
|
| 89 |
+
if preferred_file and preferred_file in candidate_files:
|
| 90 |
+
# Put preferred file first
|
| 91 |
+
ordered = [preferred_file] + [f for f in candidate_files if f != preferred_file]
|
| 92 |
+
elif preferred_file and preferred_file not in candidate_files:
|
| 93 |
+
# If user typed a specific known filename not in our shortlist, try it first anyway
|
| 94 |
+
ordered = [preferred_file] + candidate_files
|
| 95 |
+
|
| 96 |
+
for fname in ordered:
|
| 97 |
+
try:
|
| 98 |
+
model = ORTModelForCausalLM.from_pretrained(
|
| 99 |
+
onnx_repo,
|
| 100 |
+
subfolder="onnx",
|
| 101 |
+
file_name=fname,
|
| 102 |
+
)
|
| 103 |
+
break
|
| 104 |
+
except Exception as e:
|
| 105 |
+
last_err = e
|
| 106 |
+
continue
|
| 107 |
+
if model is None:
|
| 108 |
+
raise RuntimeError(f"Failed to load ONNX model from {onnx_repo}. Last error: {last_err}")
|
| 109 |
+
|
| 110 |
+
# Disable cache to avoid past_key_values shape issues on some ONNX builds
|
| 111 |
+
if hasattr(model.config, "use_cache"):
|
| 112 |
+
try:
|
| 113 |
+
model.config.use_cache = False
|
| 114 |
+
except Exception:
|
| 115 |
+
pass
|
| 116 |
+
|
| 117 |
+
llm_cache[cache_key] = (model, tokenizer)
|
| 118 |
return model, tokenizer
|
| 119 |
|
| 120 |
def update_user_prompt(detected_objects, current_prompt):
|
|
|
|
| 128 |
|
| 129 |
return new_prompt
|
| 130 |
|
| 131 |
+
def generate_text(
|
| 132 |
+
model_name,
|
| 133 |
+
onnx_file_choice,
|
| 134 |
+
system_prompt,
|
| 135 |
+
user_prompt,
|
| 136 |
+
do_sample,
|
| 137 |
+
temperature,
|
| 138 |
+
top_p,
|
| 139 |
+
top_k,
|
| 140 |
+
repetition_penalty,
|
| 141 |
+
max_new_tokens,
|
| 142 |
+
):
|
| 143 |
+
model, tokenizer = get_llm(model_name, preferred_file=None if onnx_file_choice == "auto" else onnx_file_choice)
|
| 144 |
|
| 145 |
messages = [
|
| 146 |
{"role": "system", "content": system_prompt},
|
| 147 |
{"role": "user", "content": user_prompt},
|
| 148 |
]
|
| 149 |
|
| 150 |
+
chat_template_kwargs = {
|
| 151 |
"tokenize": False,
|
| 152 |
+
"add_generation_prompt": True,
|
| 153 |
}
|
| 154 |
+
# Disable "thinking" for Qwen models
|
| 155 |
+
if "qwen" in model_name.lower():
|
| 156 |
+
chat_template_kwargs["enable_thinking"] = False
|
| 157 |
|
| 158 |
text = tokenizer.apply_chat_template(
|
| 159 |
messages,
|
| 160 |
+
**chat_template_kwargs,
|
| 161 |
)
|
| 162 |
|
| 163 |
+
inputs = tokenizer([text], return_tensors="pt")
|
| 164 |
+
|
| 165 |
+
with torch.inference_mode():
|
| 166 |
+
gen_ids = model.generate(
|
| 167 |
+
**inputs,
|
| 168 |
+
max_new_tokens=int(max_new_tokens),
|
| 169 |
+
do_sample=bool(do_sample),
|
| 170 |
+
temperature=float(temperature),
|
| 171 |
+
top_p=float(top_p),
|
| 172 |
+
top_k=int(top_k),
|
| 173 |
+
repetition_penalty=float(repetition_penalty),
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Decode only the newly generated tokens beyond the input length
|
| 177 |
+
trimmed = [
|
| 178 |
+
output_ids[len(input_ids):]
|
| 179 |
+
for input_ids, output_ids in zip(inputs.input_ids, gen_ids)
|
| 180 |
]
|
| 181 |
+
response = tokenizer.batch_decode(trimmed, skip_special_tokens=True)[0]
|
| 182 |
+
return response
|
| 183 |
|
| 184 |
+
def chat_respond(
|
| 185 |
+
model_name,
|
| 186 |
+
onnx_file_choice,
|
| 187 |
+
system_prompt,
|
| 188 |
+
message,
|
| 189 |
+
history,
|
| 190 |
+
do_sample,
|
| 191 |
+
temperature,
|
| 192 |
+
top_p,
|
| 193 |
+
top_k,
|
| 194 |
+
repetition_penalty,
|
| 195 |
+
max_new_tokens,
|
| 196 |
+
):
|
| 197 |
+
"""Builds a chat messages list from history + current user message, generates a reply, and returns updated history and an empty input box."""
|
| 198 |
+
# Guard: empty message
|
| 199 |
+
if not (message and message.strip()):
|
| 200 |
+
return history, gr.update(value="")
|
| 201 |
+
|
| 202 |
+
# Build messages: system, then alternating user/assistant from history, then current user
|
| 203 |
+
messages = [{"role": "system", "content": system_prompt}]
|
| 204 |
+
for u, a in (history or []):
|
| 205 |
+
if u:
|
| 206 |
+
messages.append({"role": "user", "content": u})
|
| 207 |
+
if a:
|
| 208 |
+
messages.append({"role": "assistant", "content": a})
|
| 209 |
+
messages.append({"role": "user", "content": message})
|
| 210 |
+
|
| 211 |
+
# Generate using the same path as generate_text, but inline to avoid extra serialization
|
| 212 |
+
model, tokenizer = get_llm(model_name, preferred_file=None if onnx_file_choice == "auto" else onnx_file_choice)
|
| 213 |
+
|
| 214 |
+
chat_template_kwargs = {
|
| 215 |
+
"tokenize": False,
|
| 216 |
+
"add_generation_prompt": True,
|
| 217 |
+
}
|
| 218 |
+
if "qwen" in model_name.lower():
|
| 219 |
+
chat_template_kwargs["enable_thinking"] = False
|
| 220 |
|
| 221 |
+
text = tokenizer.apply_chat_template(messages, **chat_template_kwargs)
|
| 222 |
+
inputs = tokenizer([text], return_tensors="pt")
|
| 223 |
+
|
| 224 |
+
with torch.inference_mode():
|
| 225 |
+
gen_ids = model.generate(
|
| 226 |
+
**inputs,
|
| 227 |
+
max_new_tokens=int(max_new_tokens),
|
| 228 |
+
do_sample=bool(do_sample),
|
| 229 |
+
temperature=float(temperature),
|
| 230 |
+
top_p=float(top_p),
|
| 231 |
+
top_k=int(top_k),
|
| 232 |
+
repetition_penalty=float(repetition_penalty),
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
trimmed = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, gen_ids)]
|
| 236 |
+
reply = tokenizer.batch_decode(trimmed, skip_special_tokens=True)[0]
|
| 237 |
+
|
| 238 |
+
new_history = (history or []) + [(message, reply)]
|
| 239 |
+
return new_history, gr.update(value="")
|
| 240 |
|
| 241 |
with gr.Blocks() as demo:
|
| 242 |
gr.Markdown("# Black Box: Object Detection and LLM Chat")
|
|
|
|
| 250 |
|
| 251 |
with gr.Tab("LLM Chat"):
|
| 252 |
model_selector = gr.Dropdown(choices=["gemma3:1b", "qwen3:0.6b"], label="Select LLM Model")
|
| 253 |
+
onnx_file_selector = gr.Dropdown(
|
| 254 |
+
choices=["auto", "model_q4.onnx", "model_int8.onnx", "model_quantized.onnx", "model.onnx"],
|
| 255 |
+
value="auto",
|
| 256 |
+
label="ONNX file variant"
|
| 257 |
+
)
|
| 258 |
system_prompt_input = gr.Textbox(label="System Prompt", value="You are a helpful assistant.")
|
| 259 |
+
chat_bot = gr.Chatbot(height=360, label="Conversation")
|
| 260 |
+
chat_history = gr.State([])
|
| 261 |
+
user_prompt_input = gr.Textbox(label="Message", placeholder="Type your message and press Send...", lines=3)
|
| 262 |
+
with gr.Accordion("Generation settings", open=False):
|
| 263 |
+
do_sample_cb = gr.Checkbox(value=True, label="do_sample")
|
| 264 |
+
temperature_sl = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="temperature")
|
| 265 |
+
top_p_sl = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.01, label="top_p")
|
| 266 |
+
top_k_sl = gr.Slider(minimum=0, maximum=200, value=50, step=1, label="top_k")
|
| 267 |
+
repetition_penalty_sl = gr.Slider(minimum=0.8, maximum=2.0, value=1.05, step=0.01, label="repetition_penalty")
|
| 268 |
+
max_new_tokens_sl = gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="max_new_tokens")
|
| 269 |
+
with gr.Row():
|
| 270 |
+
send_btn = gr.Button("Send", variant="primary")
|
| 271 |
+
clear_btn = gr.Button("Clear chat")
|
| 272 |
|
| 273 |
# Connect object detection components
|
| 274 |
object_detection_button.click(
|
|
|
|
| 277 |
outputs=[detected_image_output, detected_objects_output]
|
| 278 |
)
|
| 279 |
|
| 280 |
+
# Connect LLM chat components
|
| 281 |
+
send_btn.click(
|
| 282 |
+
fn=chat_respond,
|
| 283 |
+
inputs=[
|
| 284 |
+
model_selector,
|
| 285 |
+
onnx_file_selector,
|
| 286 |
+
system_prompt_input,
|
| 287 |
+
user_prompt_input,
|
| 288 |
+
chat_history,
|
| 289 |
+
do_sample_cb,
|
| 290 |
+
temperature_sl,
|
| 291 |
+
top_p_sl,
|
| 292 |
+
top_k_sl,
|
| 293 |
+
repetition_penalty_sl,
|
| 294 |
+
max_new_tokens_sl,
|
| 295 |
+
],
|
| 296 |
+
outputs=[chat_bot, user_prompt_input],
|
| 297 |
+
)
|
| 298 |
+
# Also submit on Enter
|
| 299 |
+
user_prompt_input.submit(
|
| 300 |
+
fn=chat_respond,
|
| 301 |
+
inputs=[
|
| 302 |
+
model_selector,
|
| 303 |
+
onnx_file_selector,
|
| 304 |
+
system_prompt_input,
|
| 305 |
+
user_prompt_input,
|
| 306 |
+
chat_history,
|
| 307 |
+
do_sample_cb,
|
| 308 |
+
temperature_sl,
|
| 309 |
+
top_p_sl,
|
| 310 |
+
top_k_sl,
|
| 311 |
+
repetition_penalty_sl,
|
| 312 |
+
max_new_tokens_sl,
|
| 313 |
+
],
|
| 314 |
+
outputs=[chat_bot, user_prompt_input],
|
| 315 |
)
|
| 316 |
+
# Clear chat
|
| 317 |
+
def _clear_chat():
|
| 318 |
+
return [], gr.update(value="")
|
| 319 |
+
clear_btn.click(fn=_clear_chat, inputs=None, outputs=[chat_bot, user_prompt_input])
|
| 320 |
|
| 321 |
+
# Connect detected objects to user message input
|
| 322 |
detected_objects_output.change(
|
| 323 |
fn=update_user_prompt,
|
| 324 |
inputs=[detected_objects_output, user_prompt_input],
|
| 325 |
+
outputs=user_prompt_input,
|
| 326 |
)
|
| 327 |
|
| 328 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ gradio
|
|
| 2 |
torch
|
| 3 |
transformers
|
| 4 |
pillow
|
| 5 |
-
accelerate
|
|
|
|
|
|
| 2 |
torch
|
| 3 |
transformers
|
| 4 |
pillow
|
| 5 |
+
accelerate
|
| 6 |
+
optimum[onnxruntime]
|