Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
import spaces
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import os
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import torch
|
| 10 |
+
import diffusers
|
| 11 |
+
from pipeline_flux_rf_inversion import RFInversionFluxPipeline
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
+
MAX_IMAGE_SIZE = 1024
|
| 16 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
pipe = RFInversionFluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
|
| 20 |
+
torch_dtype=torch.bfloat16)
|
| 21 |
+
pipe.to(DEVICE)
|
| 22 |
+
|
| 23 |
+
def reset_do_inversion():
|
| 24 |
+
return True
|
| 25 |
+
|
| 26 |
+
def resize_img(image, max_size=1024):
|
| 27 |
+
width, height = image.size
|
| 28 |
+
scaling_factor = min(max_size / width, max_size / height)
|
| 29 |
+
new_width = int(width * scaling_factor)
|
| 30 |
+
new_height = int(height * scaling_factor)
|
| 31 |
+
return image.resize((new_width, new_height), Image.LANCZOS)
|
| 32 |
+
|
| 33 |
+
def invert_and_edit(image,
|
| 34 |
+
prompt,
|
| 35 |
+
eta,
|
| 36 |
+
gamma,
|
| 37 |
+
start_timestep,
|
| 38 |
+
stop_timestep,
|
| 39 |
+
num_inversion_steps,
|
| 40 |
+
width,
|
| 41 |
+
height,
|
| 42 |
+
inverted_latents,
|
| 43 |
+
image_latents,
|
| 44 |
+
latent_image_ids,
|
| 45 |
+
do_inversion,
|
| 46 |
+
seed,
|
| 47 |
+
randomize_seed,
|
| 48 |
+
):
|
| 49 |
+
if randomize_seed:
|
| 50 |
+
seed = random.randint(0, MAX_SEED)
|
| 51 |
+
if do_inversion:
|
| 52 |
+
inverted_latents_tensor, image_latents_tensor, latent_image_ids_tensor = pipe.invert(image, num_inversion_steps=num_inversion_steps, gamma=gamma)
|
| 53 |
+
inverted_latents = gr.State(value=inverted_latents_tensor)
|
| 54 |
+
image_latents = gr.State(value=image_latents_tensor)
|
| 55 |
+
latent_image_ids = gr.State(value=latent_image_ids_tensor)
|
| 56 |
+
do_inversion = False
|
| 57 |
+
|
| 58 |
+
else:
|
| 59 |
+
output = pipe(prompt,
|
| 60 |
+
inverted_latents=inverted_latents.value,
|
| 61 |
+
image_latents=image_latents.value,
|
| 62 |
+
latent_image_ids=latent_image_ids.value,
|
| 63 |
+
start_timestep=start_timestep,
|
| 64 |
+
stop_timestep=stop_timestep,
|
| 65 |
+
num_inference_steps=num_inversion_steps,
|
| 66 |
+
eta=eta,
|
| 67 |
+
).images[0]
|
| 68 |
+
|
| 69 |
+
return output, inverted_latents, image_latents, latent_image_ids, do_inversion, seed
|
| 70 |
+
|
| 71 |
+
# UI CSS
|
| 72 |
+
css = """
|
| 73 |
+
#col-container {
|
| 74 |
+
margin: 0 auto;
|
| 75 |
+
max-width: 960px;
|
| 76 |
+
}
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
# Create the Gradio interface
|
| 80 |
+
with gr.Blocks(css=css) as demo:
|
| 81 |
+
|
| 82 |
+
inverted_latents = gr.State()
|
| 83 |
+
image_latents = gr.State()
|
| 84 |
+
latent_image_ids = gr.State()
|
| 85 |
+
do_inversion = gr.State(False)
|
| 86 |
+
|
| 87 |
+
with gr.Column(elem_id="col-container"):
|
| 88 |
+
gr.Markdown(f"""# RF inversion with FLUX.1 [dev] ποΈποΈ
|
| 89 |
+
Edit real images with Flux, based on the algorithm proposed in [*Semantic Image Inversion and Editing using
|
| 90 |
+
Stochastic Rectified Differential Equations*](https://rf-inversion.github.io/data/rf-inversion.pdf)
|
| 91 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://rf-inversion.github.io/] [[arxiv](https://arxiv.org/pdf/2410.10792)]
|
| 92 |
+
""")
|
| 93 |
+
|
| 94 |
+
with gr.Row():
|
| 95 |
+
with gr.Column():
|
| 96 |
+
input_image = gr.Image(
|
| 97 |
+
label="Input Image",
|
| 98 |
+
type="pil"
|
| 99 |
+
)
|
| 100 |
+
eta = gr.Slider(
|
| 101 |
+
label="eta",
|
| 102 |
+
info = "lower eta to ehnace the edits",
|
| 103 |
+
minimum=0.0,
|
| 104 |
+
maximum=1.0,
|
| 105 |
+
step=0.1,
|
| 106 |
+
value=0.9,
|
| 107 |
+
)
|
| 108 |
+
prompt = gr.Text(
|
| 109 |
+
label="Edit Prompt",
|
| 110 |
+
max_lines=1,
|
| 111 |
+
placeholder="describe the edited output",
|
| 112 |
+
)
|
| 113 |
+
run_button = gr.Button("Edit", variant="primary")
|
| 114 |
+
|
| 115 |
+
with gr.Column():
|
| 116 |
+
result = gr.Image(label="Result")
|
| 117 |
+
|
| 118 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 119 |
+
seed = gr.Slider(
|
| 120 |
+
label="Seed",
|
| 121 |
+
minimum=0,
|
| 122 |
+
maximum=MAX_SEED,
|
| 123 |
+
step=1,
|
| 124 |
+
value=42,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
width = gr.Slider(
|
| 131 |
+
label="Width",
|
| 132 |
+
minimum=256,
|
| 133 |
+
maximum=MAX_IMAGE_SIZE,
|
| 134 |
+
step=32,
|
| 135 |
+
value=1024,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
height = gr.Slider(
|
| 139 |
+
label="Height",
|
| 140 |
+
minimum=256,
|
| 141 |
+
maximum=MAX_IMAGE_SIZE,
|
| 142 |
+
step=32,
|
| 143 |
+
value=1024,
|
| 144 |
+
)
|
| 145 |
+
with gr.Row():
|
| 146 |
+
gamma = gr.Slider(
|
| 147 |
+
label="gamma",
|
| 148 |
+
info = "lower gamma to ehnace the edits",
|
| 149 |
+
minimum=0.0,
|
| 150 |
+
maximum=1.0,
|
| 151 |
+
step=0.1,
|
| 152 |
+
value=0.9,
|
| 153 |
+
)
|
| 154 |
+
start_timestep = gr.Slider(
|
| 155 |
+
label="start timestep",
|
| 156 |
+
info = "lower gamma to ehnace the edits",
|
| 157 |
+
minimum=0.0,
|
| 158 |
+
maximum=1.0,
|
| 159 |
+
step=0.1,
|
| 160 |
+
value=0.9,
|
| 161 |
+
)
|
| 162 |
+
stop_timestep = gr.Slider(
|
| 163 |
+
label="stop timestep",
|
| 164 |
+
info = "lower gamma to ehnace the edits",
|
| 165 |
+
minimum=0.0,
|
| 166 |
+
maximum=1.0,
|
| 167 |
+
step=0.1,
|
| 168 |
+
value=0.9,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
run_button.click(
|
| 172 |
+
fn=invert_and_edit,
|
| 173 |
+
inputs=[
|
| 174 |
+
input_image,
|
| 175 |
+
prompt,
|
| 176 |
+
eta,
|
| 177 |
+
gamma,
|
| 178 |
+
start_timestep,
|
| 179 |
+
stop_timestep,
|
| 180 |
+
num_inversion_steps,
|
| 181 |
+
width,
|
| 182 |
+
height,
|
| 183 |
+
inverted_latents,
|
| 184 |
+
image_latents,
|
| 185 |
+
latent_image_ids,
|
| 186 |
+
do_inversion,
|
| 187 |
+
seed,
|
| 188 |
+
randomize_seed
|
| 189 |
+
],
|
| 190 |
+
outputs=[result, inverted_latents, image_latents, latent_image_ids, do_inversion, seed],
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
input_image.change(
|
| 194 |
+
fn=reset_do_inversion,
|
| 195 |
+
outputs=[do_inversion]
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
if __name__ == "__main__":
|
| 199 |
+
demo.launch()
|