Richard Guo
commited on
Commit
·
9a64205
1
Parent(s):
1bacad4
working auto dataset upload
Browse files- app.py +5 -3
- build_map.py +243 -0
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from fastapi import FastAPI, Request
|
| 2 |
from fastapi.responses import HTMLResponse
|
| 3 |
from fastapi.templating import Jinja2Templates
|
| 4 |
from typing import Optional
|
|
@@ -15,15 +15,17 @@ templates = Jinja2Templates(directory="templates")
|
|
| 15 |
# Create a Pydantic model for the form data
|
| 16 |
class DatasetForm(BaseModel):
|
| 17 |
dataset_name: str
|
| 18 |
-
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
@app.get("/", response_class=HTMLResponse)
|
| 22 |
async def read_form(request: Request):
|
| 23 |
# Render the form.html template
|
| 24 |
return templates.TemplateResponse("form.html", {"request": request})
|
| 25 |
|
| 26 |
-
|
| 27 |
@app.post("/submit_form")
|
| 28 |
async def form_post(form_data: DatasetForm):
|
| 29 |
# Do something with form_data
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request, WebSocket
|
| 2 |
from fastapi.responses import HTMLResponse
|
| 3 |
from fastapi.templating import Jinja2Templates
|
| 4 |
from typing import Optional
|
|
|
|
| 15 |
# Create a Pydantic model for the form data
|
| 16 |
class DatasetForm(BaseModel):
|
| 17 |
dataset_name: str
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
+
|
| 21 |
+
def long_running_function():
|
| 22 |
+
pass
|
| 23 |
+
|
| 24 |
@app.get("/", response_class=HTMLResponse)
|
| 25 |
async def read_form(request: Request):
|
| 26 |
# Render the form.html template
|
| 27 |
return templates.TemplateResponse("form.html", {"request": request})
|
| 28 |
|
|
|
|
| 29 |
@app.post("/submit_form")
|
| 30 |
async def form_post(form_data: DatasetForm):
|
| 31 |
# Do something with form_data
|
build_map.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import nomic
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from datasets import load_dataset, \
|
| 5 |
+
get_dataset_split_names, \
|
| 6 |
+
get_dataset_config_names, \
|
| 7 |
+
ClassLabel, utils
|
| 8 |
+
|
| 9 |
+
utils.logging.set_verbosity_error()
|
| 10 |
+
import pyarrow as pa
|
| 11 |
+
from dateutil.parser import parse
|
| 12 |
+
import time
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_datum_fields(dataset_dict, n_samples = 100, unique_cutoff=20):
|
| 16 |
+
# take a sample of points
|
| 17 |
+
dataset = dataset_dict["first_split_dataset"]
|
| 18 |
+
sample = pd.DataFrame(dataset.shuffle(seed=42).take(n_samples))
|
| 19 |
+
features = dataset.features
|
| 20 |
+
|
| 21 |
+
numeric_fields = []
|
| 22 |
+
string_fields = []
|
| 23 |
+
bool_fields = []
|
| 24 |
+
list_fields = []
|
| 25 |
+
label_fields = []
|
| 26 |
+
categorical_fields = []
|
| 27 |
+
datetime_fields = []
|
| 28 |
+
uncategorized_fields = []
|
| 29 |
+
|
| 30 |
+
if unique_cutoff < 1:
|
| 31 |
+
unique_cutoff = unique_cutoff*len(sample)
|
| 32 |
+
|
| 33 |
+
for field, dtype in dataset_dict["schema"].items():
|
| 34 |
+
try:
|
| 35 |
+
num_unique = sample[field].nunique()
|
| 36 |
+
except:
|
| 37 |
+
num_unique = len(sample)
|
| 38 |
+
|
| 39 |
+
if dtype == "string":
|
| 40 |
+
if num_unique < unique_cutoff:
|
| 41 |
+
categorical_fields.append(field)
|
| 42 |
+
else:
|
| 43 |
+
is_datetime = True
|
| 44 |
+
for row in sample:
|
| 45 |
+
try:
|
| 46 |
+
parse(row[field], fuzzy=False)
|
| 47 |
+
except:
|
| 48 |
+
is_datetime = False
|
| 49 |
+
break
|
| 50 |
+
if is_datetime:
|
| 51 |
+
datetime_fields.append(field)
|
| 52 |
+
else:
|
| 53 |
+
string_fields.append(field)
|
| 54 |
+
|
| 55 |
+
elif dtype in ("float"):
|
| 56 |
+
numeric_fields.append(field)
|
| 57 |
+
|
| 58 |
+
elif dtype in ("int64", "int32", "int16", "int8"):
|
| 59 |
+
if features is not None and field in features and isinstance(features[field], ClassLabel):
|
| 60 |
+
label_fields.append(field)
|
| 61 |
+
elif num_unique < unique_cutoff:
|
| 62 |
+
categorical_fields.append(field)
|
| 63 |
+
else:
|
| 64 |
+
numeric_fields.append(field)
|
| 65 |
+
|
| 66 |
+
elif dtype == "bool":
|
| 67 |
+
bool_fields.append(field)
|
| 68 |
+
|
| 69 |
+
elif "list" == dtype[0:4]:
|
| 70 |
+
list_fields.append(field)
|
| 71 |
+
|
| 72 |
+
else:
|
| 73 |
+
uncategorized_fields.append(field)
|
| 74 |
+
|
| 75 |
+
return features, \
|
| 76 |
+
numeric_fields, \
|
| 77 |
+
string_fields, \
|
| 78 |
+
bool_fields, \
|
| 79 |
+
list_fields, \
|
| 80 |
+
label_fields, \
|
| 81 |
+
categorical_fields, \
|
| 82 |
+
datetime_fields, \
|
| 83 |
+
uncategorized_fields
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def load_dataset_and_metadata(dataset_name,
|
| 87 |
+
config=None,
|
| 88 |
+
streaming=True):
|
| 89 |
+
|
| 90 |
+
configs = get_dataset_config_names(dataset_name)
|
| 91 |
+
if config is None:
|
| 92 |
+
config = configs[0]
|
| 93 |
+
|
| 94 |
+
splits = get_dataset_split_names(dataset_name, config)
|
| 95 |
+
dataset = load_dataset(dataset_name, config, split = splits[0], streaming=streaming)
|
| 96 |
+
head = pa.Table.from_pydict(dataset._head())
|
| 97 |
+
|
| 98 |
+
schema_dict = {field.name: str(field.type) for field in head.schema}
|
| 99 |
+
|
| 100 |
+
dataset_dict = {
|
| 101 |
+
"first_split_dataset": dataset,
|
| 102 |
+
"name": dataset_name,
|
| 103 |
+
"config": config,
|
| 104 |
+
"splits": splits,
|
| 105 |
+
"schema": schema_dict,
|
| 106 |
+
"head": head
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
return dataset_dict
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def upload_project_to_atlas(dataset_dict,
|
| 113 |
+
project_name = None,
|
| 114 |
+
unique_id_field_name=None,
|
| 115 |
+
indexed_field = None,
|
| 116 |
+
modality=None,
|
| 117 |
+
organization_name=None):
|
| 118 |
+
|
| 119 |
+
if modality is None:
|
| 120 |
+
modality = "text"
|
| 121 |
+
|
| 122 |
+
if unique_id_field_name is None:
|
| 123 |
+
unique_id_field_name = "atlas_datum_id"
|
| 124 |
+
|
| 125 |
+
if project_name is None:
|
| 126 |
+
project_name = dataset_dict["name"].replace("/", "--")
|
| 127 |
+
|
| 128 |
+
desc = f"Config: {dataset_dict['config']}"
|
| 129 |
+
|
| 130 |
+
features, \
|
| 131 |
+
numeric_fields, \
|
| 132 |
+
string_fields, \
|
| 133 |
+
bool_fields, \
|
| 134 |
+
list_fields, \
|
| 135 |
+
label_fields, \
|
| 136 |
+
categorical_fields, \
|
| 137 |
+
datetime_fields, \
|
| 138 |
+
uncategorized_fields = get_datum_fields(dataset_dict)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# return longest string field
|
| 142 |
+
if indexed_field is None:
|
| 143 |
+
ex = dataset_dict["head"].take([0])
|
| 144 |
+
longest_len = 0
|
| 145 |
+
for field in string_fields:
|
| 146 |
+
if ex[field] and len(ex[field]) > longest_len:
|
| 147 |
+
indexed_field = field
|
| 148 |
+
longest_len = len(ex[field])
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
topic_label_field = None
|
| 152 |
+
if modality == "embedding":
|
| 153 |
+
topic_label_field = indexed_field
|
| 154 |
+
indexed_field = None
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
easy_fields = string_fields + bool_fields + list_fields + categorical_fields
|
| 158 |
+
|
| 159 |
+
proj = nomic.AtlasProject(name=project_name,
|
| 160 |
+
modality=modality,
|
| 161 |
+
unique_id_field=unique_id_field_name,
|
| 162 |
+
organization_name=organization_name,
|
| 163 |
+
description=desc,
|
| 164 |
+
reset_project_if_exists=True)
|
| 165 |
+
|
| 166 |
+
colorable_fields = ["split"]
|
| 167 |
+
|
| 168 |
+
batch_size = 1000
|
| 169 |
+
batched_texts = []
|
| 170 |
+
|
| 171 |
+
for split in dataset_dict["splits"]:
|
| 172 |
+
|
| 173 |
+
dataset = load_dataset(dataset_dict["name"], dataset_dict["config"], split = split, streaming=True)
|
| 174 |
+
|
| 175 |
+
for i, ex in tqdm(enumerate(dataset)):
|
| 176 |
+
if i % 10000 == 0:
|
| 177 |
+
time.sleep(2)
|
| 178 |
+
|
| 179 |
+
data_to_add = {"split": split, unique_id_field_name: f"{split}_{i}"}
|
| 180 |
+
|
| 181 |
+
for field in numeric_fields:
|
| 182 |
+
data_to_add[field] = ex[field]
|
| 183 |
+
|
| 184 |
+
for field in easy_fields:
|
| 185 |
+
val = ""
|
| 186 |
+
if ex[field]:
|
| 187 |
+
val = str(ex[field])
|
| 188 |
+
data_to_add[field] = val
|
| 189 |
+
|
| 190 |
+
for field in datetime_fields:
|
| 191 |
+
try:
|
| 192 |
+
data_to_add[field] = parse(ex[field], fuzzy=False)
|
| 193 |
+
except:
|
| 194 |
+
data_to_add[field] = None
|
| 195 |
+
|
| 196 |
+
for field in label_fields:
|
| 197 |
+
label_name = ""
|
| 198 |
+
if ex[field] is not None:
|
| 199 |
+
index = ex[field]
|
| 200 |
+
# NOTE: THIS MAY BREAK if -1 is ACTUALLY NO LABEL
|
| 201 |
+
if index != -1:
|
| 202 |
+
label_name = features[field].names[ex[field]]
|
| 203 |
+
data_to_add[field] = str(ex[field])
|
| 204 |
+
data_to_add[field + "_name"] = label_name
|
| 205 |
+
colorable_fields.add(field + "_name")
|
| 206 |
+
|
| 207 |
+
for field in list_fields:
|
| 208 |
+
list_str = ""
|
| 209 |
+
if ex[field]:
|
| 210 |
+
try:
|
| 211 |
+
list_str = str(ex[field])
|
| 212 |
+
except:
|
| 213 |
+
continue
|
| 214 |
+
data_to_add[field] = list_str
|
| 215 |
+
|
| 216 |
+
batched_texts.append(data_to_add)
|
| 217 |
+
|
| 218 |
+
if len(batched_texts) >= batch_size:
|
| 219 |
+
proj.add_text(batched_texts)
|
| 220 |
+
batched_texts = []
|
| 221 |
+
|
| 222 |
+
if len(batched_texts) > 0:
|
| 223 |
+
proj.add_text(batched_texts)
|
| 224 |
+
|
| 225 |
+
colorable_fields = colorable_fields + \
|
| 226 |
+
categorical_fields + label_fields + bool_fields + datetime_fields
|
| 227 |
+
|
| 228 |
+
projection = proj.create_index(name=project_name + " index",
|
| 229 |
+
indexed_field=indexed_field,
|
| 230 |
+
colorable_fields=colorable_fields,
|
| 231 |
+
topic_label_field = topic_label_field,
|
| 232 |
+
build_topic_model=True)
|
| 233 |
+
|
| 234 |
+
return projection.map_link
|
| 235 |
+
|
| 236 |
+
# Run test
|
| 237 |
+
if __name__ == "__main__":
|
| 238 |
+
dataset_name = "databricks/databricks-dolly-15k"
|
| 239 |
+
#dataset_name = "fka/awesome-chatgpt-prompts"
|
| 240 |
+
project_name = "huggingface_auto_upload_test-dolly-15k"
|
| 241 |
+
|
| 242 |
+
dataset_dict = load_dataset_and_metadata(dataset_name)
|
| 243 |
+
print(upload_project_to_atlas(dataset_dict, project_name=project_name))
|