Spaces:
Runtime error
Runtime error
Commit
·
f79718f
1
Parent(s):
fcffc62
update dockerfile
Browse files- Dockerfile +6 -2
- load_data.py +56 -27
- start.sh +18 -7
Dockerfile
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
FROM docker.elastic.co/elasticsearch/elasticsearch:8.5.3
|
| 2 |
|
| 3 |
# Environment variable
|
|
|
|
| 4 |
ENV TEAM_PASSWORD=1234
|
| 5 |
ENV ARGILLA_PASSWORD=1234
|
| 6 |
ENV TEAM_API_KEY=team.apikey
|
|
@@ -23,13 +24,16 @@ RUN pip3 install datasets
|
|
| 23 |
|
| 24 |
COPY start.sh /
|
| 25 |
RUN chmod +x /start.sh
|
|
|
|
|
|
|
| 26 |
COPY *.whl /packages/
|
| 27 |
|
| 28 |
# Install argilla
|
| 29 |
RUN for wheel in /packages/*.whl; do pip install "$wheel"[server]; done
|
| 30 |
|
| 31 |
USER elasticsearch
|
| 32 |
-
RUN touch $HOME/users.yml
|
| 33 |
-
RUN chown -R elasticsearch:elasticsearch $HOME/users.yml
|
|
|
|
| 34 |
|
| 35 |
CMD ["/start.sh"]
|
|
|
|
| 1 |
FROM docker.elastic.co/elasticsearch/elasticsearch:8.5.3
|
| 2 |
|
| 3 |
# Environment variable
|
| 4 |
+
ENV ARGILLA_LOCAL_AUTH_USERS_DB_FILE=/usr/share/elasticsearch/users.yml
|
| 5 |
ENV TEAM_PASSWORD=1234
|
| 6 |
ENV ARGILLA_PASSWORD=1234
|
| 7 |
ENV TEAM_API_KEY=team.apikey
|
|
|
|
| 24 |
|
| 25 |
COPY start.sh /
|
| 26 |
RUN chmod +x /start.sh
|
| 27 |
+
|
| 28 |
+
COPY scripts/load_data.py /
|
| 29 |
COPY *.whl /packages/
|
| 30 |
|
| 31 |
# Install argilla
|
| 32 |
RUN for wheel in /packages/*.whl; do pip install "$wheel"[server]; done
|
| 33 |
|
| 34 |
USER elasticsearch
|
| 35 |
+
RUN touch "$HOME"/users.yml
|
| 36 |
+
RUN chown -R elasticsearch:elasticsearch "$HOME"/users.yml
|
| 37 |
+
RUN chmod 777 "$HOME"/users.yml
|
| 38 |
|
| 39 |
CMD ["/start.sh"]
|
load_data.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
import os
|
| 2 |
import sys
|
| 3 |
-
import requests
|
| 4 |
import time
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
-
import
|
| 7 |
from datasets import load_dataset
|
|
|
|
|
|
|
| 8 |
from argilla.labeling.text_classification import Rule, add_rules
|
| 9 |
|
| 10 |
|
|
@@ -16,13 +17,14 @@ def load_datasets():
|
|
| 16 |
|
| 17 |
# load dataset from json
|
| 18 |
my_dataframe = pd.read_json(
|
| 19 |
-
"https://raw.githubusercontent.com/recognai/datasets/main/sst-sentimentclassification.json"
|
|
|
|
| 20 |
|
| 21 |
# convert pandas dataframe to DatasetForTextClassification
|
| 22 |
dataset_rg = rg.DatasetForTextClassification.from_pandas(my_dataframe)
|
| 23 |
|
| 24 |
# Define labeling schema to avoid UI user modification
|
| 25 |
-
settings = rg.TextClassificationSettings(label_schema=
|
| 26 |
rg.configure_dataset(name="sst-sentiment-explainability", settings=settings)
|
| 27 |
|
| 28 |
# log the dataset
|
|
@@ -30,8 +32,9 @@ def load_datasets():
|
|
| 30 |
dataset_rg,
|
| 31 |
name="sst-sentiment-explainability",
|
| 32 |
tags={
|
| 33 |
-
"description": "The sst2 sentiment dataset with predictions from a pretrained pipeline and explanations
|
| 34 |
-
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
dataset = load_dataset("argilla/news-summary", split="train").select(range(100))
|
|
@@ -43,7 +46,7 @@ def load_datasets():
|
|
| 43 |
name="news-text-summarization",
|
| 44 |
tags={
|
| 45 |
"description": "A text summarization dataset with news pieces and their predicted summaries."
|
| 46 |
-
}
|
| 47 |
)
|
| 48 |
|
| 49 |
# Read dataset from Hub
|
|
@@ -53,7 +56,9 @@ def load_datasets():
|
|
| 53 |
)
|
| 54 |
|
| 55 |
# Define labeling schema to avoid UI user modification
|
| 56 |
-
settings = rg.TextClassificationSettings(
|
|
|
|
|
|
|
| 57 |
rg.configure_dataset(name="news-programmatic-labeling", settings=settings)
|
| 58 |
|
| 59 |
# log the dataset
|
|
@@ -62,7 +67,7 @@ def load_datasets():
|
|
| 62 |
name="news-programmatic-labeling",
|
| 63 |
tags={
|
| 64 |
"description": "The AG News with programmatic labeling rules (see weak labeling mode in the UI)."
|
| 65 |
-
}
|
| 66 |
)
|
| 67 |
|
| 68 |
# define queries and patterns for each category (using ES DSL)
|
|
@@ -74,7 +79,9 @@ def load_datasets():
|
|
| 74 |
]
|
| 75 |
|
| 76 |
# define rules
|
| 77 |
-
rules = [
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# add rules to the dataset
|
| 80 |
add_rules(dataset="news-programmatic-labeling", rules=rules)
|
|
@@ -82,12 +89,30 @@ def load_datasets():
|
|
| 82 |
# load dataset from the hub
|
| 83 |
dataset = load_dataset("argilla/gutenberg_spacy-ner", split="train")
|
| 84 |
|
| 85 |
-
# read in dataset, assuming
|
| 86 |
dataset_rg = rg.read_datasets(dataset, task="TokenClassification")
|
| 87 |
|
| 88 |
# Define labeling schema to avoid UI user modification
|
| 89 |
-
labels =
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
settings = rg.TokenClassificationSettings(label_schema=labels)
|
| 92 |
rg.configure_dataset(name="gutenberg_spacy-ner-monitoring", settings=settings)
|
| 93 |
|
|
@@ -96,20 +121,24 @@ def load_datasets():
|
|
| 96 |
dataset_rg,
|
| 97 |
"gutenberg_spacy-ner-monitoring",
|
| 98 |
tags={
|
| 99 |
-
"description": "A dataset containing text from books with predictions from two spaCy NER pre-trained
|
| 100 |
-
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
time.sleep(10)
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
time.sleep(
|
| 115 |
-
pass
|
|
|
|
|
|
|
| 1 |
import sys
|
|
|
|
| 2 |
import time
|
| 3 |
+
|
| 4 |
import pandas as pd
|
| 5 |
+
import requests
|
| 6 |
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
import argilla as rg
|
| 9 |
from argilla.labeling.text_classification import Rule, add_rules
|
| 10 |
|
| 11 |
|
|
|
|
| 17 |
|
| 18 |
# load dataset from json
|
| 19 |
my_dataframe = pd.read_json(
|
| 20 |
+
"https://raw.githubusercontent.com/recognai/datasets/main/sst-sentimentclassification.json"
|
| 21 |
+
)
|
| 22 |
|
| 23 |
# convert pandas dataframe to DatasetForTextClassification
|
| 24 |
dataset_rg = rg.DatasetForTextClassification.from_pandas(my_dataframe)
|
| 25 |
|
| 26 |
# Define labeling schema to avoid UI user modification
|
| 27 |
+
settings = rg.TextClassificationSettings(label_schema={"POSITIVE", "NEGATIVE"})
|
| 28 |
rg.configure_dataset(name="sst-sentiment-explainability", settings=settings)
|
| 29 |
|
| 30 |
# log the dataset
|
|
|
|
| 32 |
dataset_rg,
|
| 33 |
name="sst-sentiment-explainability",
|
| 34 |
tags={
|
| 35 |
+
"description": "The sst2 sentiment dataset with predictions from a pretrained pipeline and explanations "
|
| 36 |
+
"from Transformers Interpret. "
|
| 37 |
+
},
|
| 38 |
)
|
| 39 |
|
| 40 |
dataset = load_dataset("argilla/news-summary", split="train").select(range(100))
|
|
|
|
| 46 |
name="news-text-summarization",
|
| 47 |
tags={
|
| 48 |
"description": "A text summarization dataset with news pieces and their predicted summaries."
|
| 49 |
+
},
|
| 50 |
)
|
| 51 |
|
| 52 |
# Read dataset from Hub
|
|
|
|
| 56 |
)
|
| 57 |
|
| 58 |
# Define labeling schema to avoid UI user modification
|
| 59 |
+
settings = rg.TextClassificationSettings(
|
| 60 |
+
label_schema={"World", "Sports", "Sci/Tech", "Business"}
|
| 61 |
+
)
|
| 62 |
rg.configure_dataset(name="news-programmatic-labeling", settings=settings)
|
| 63 |
|
| 64 |
# log the dataset
|
|
|
|
| 67 |
name="news-programmatic-labeling",
|
| 68 |
tags={
|
| 69 |
"description": "The AG News with programmatic labeling rules (see weak labeling mode in the UI)."
|
| 70 |
+
},
|
| 71 |
)
|
| 72 |
|
| 73 |
# define queries and patterns for each category (using ES DSL)
|
|
|
|
| 79 |
]
|
| 80 |
|
| 81 |
# define rules
|
| 82 |
+
rules = [
|
| 83 |
+
Rule(query=term, label=label) for terms, label in queries for term in terms
|
| 84 |
+
]
|
| 85 |
|
| 86 |
# add rules to the dataset
|
| 87 |
add_rules(dataset="news-programmatic-labeling", rules=rules)
|
|
|
|
| 89 |
# load dataset from the hub
|
| 90 |
dataset = load_dataset("argilla/gutenberg_spacy-ner", split="train")
|
| 91 |
|
| 92 |
+
# read in dataset, assuming it's a dataset for token classification
|
| 93 |
dataset_rg = rg.read_datasets(dataset, task="TokenClassification")
|
| 94 |
|
| 95 |
# Define labeling schema to avoid UI user modification
|
| 96 |
+
labels = {
|
| 97 |
+
"CARDINAL",
|
| 98 |
+
"DATE",
|
| 99 |
+
"EVENT",
|
| 100 |
+
"FAC",
|
| 101 |
+
"GPE",
|
| 102 |
+
"LANGUAGE",
|
| 103 |
+
"LAW",
|
| 104 |
+
"LOC",
|
| 105 |
+
"MONEY",
|
| 106 |
+
"NORP",
|
| 107 |
+
"ORDINAL",
|
| 108 |
+
"ORG",
|
| 109 |
+
"PERCENT",
|
| 110 |
+
"PERSON",
|
| 111 |
+
"PRODUCT",
|
| 112 |
+
"QUANTITY",
|
| 113 |
+
"TIME",
|
| 114 |
+
"WORK_OF_ART",
|
| 115 |
+
}
|
| 116 |
settings = rg.TokenClassificationSettings(label_schema=labels)
|
| 117 |
rg.configure_dataset(name="gutenberg_spacy-ner-monitoring", settings=settings)
|
| 118 |
|
|
|
|
| 121 |
dataset_rg,
|
| 122 |
"gutenberg_spacy-ner-monitoring",
|
| 123 |
tags={
|
| 124 |
+
"description": "A dataset containing text from books with predictions from two spaCy NER pre-trained "
|
| 125 |
+
"models. "
|
| 126 |
+
},
|
| 127 |
)
|
| 128 |
|
| 129 |
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
while True:
|
| 132 |
+
try:
|
| 133 |
+
response = requests.get("http://0.0.0.0:6900/")
|
| 134 |
+
if response.status_code == 200:
|
| 135 |
+
load_datasets()
|
| 136 |
+
break
|
| 137 |
+
except requests.exceptions.ConnectionError:
|
| 138 |
+
pass
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(e)
|
| 141 |
time.sleep(10)
|
| 142 |
+
pass
|
| 143 |
+
|
| 144 |
+
time.sleep(5)
|
|
|
start.sh
CHANGED
|
@@ -2,32 +2,43 @@
|
|
| 2 |
|
| 3 |
set -e
|
| 4 |
|
| 5 |
-
# Start Elasticsearch
|
| 6 |
-
echo "Starting Elasticsearch"
|
| 7 |
-
elasticsearch 1>/dev/null 2>/dev/null &
|
| 8 |
whoami
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Create users.yml file
|
| 11 |
echo "Creating users schema"
|
| 12 |
cat >"$HOME"/users.yml <<EOF
|
| 13 |
- username: "team"
|
| 14 |
-
api_key: TEAM_API_KEY
|
| 15 |
full_name: Team
|
| 16 |
email: team@argilla.io
|
| 17 |
-
hashed_password:
|
| 18 |
workspaces: []
|
| 19 |
|
| 20 |
- username: "argilla"
|
| 21 |
-
api_key: ARGILLA_API_KEY
|
| 22 |
full_name: Argilla
|
| 23 |
email: argilla@argilla.io
|
| 24 |
-
hashed_password:
|
| 25 |
workspaces: ["team"]
|
| 26 |
EOF
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
echo "Waiting for elasticsearch to start"
|
| 29 |
sleep 15
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Start Argilla
|
| 32 |
echo "Starting Argilla"
|
| 33 |
uvicorn argilla:app --host "0.0.0.0"
|
|
|
|
| 2 |
|
| 3 |
set -e
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
whoami
|
| 6 |
|
| 7 |
+
# Generate hashed passwords
|
| 8 |
+
team_password=$(htpasswd -nbB "" "$TEAM_PASSWORD" | cut -d ":" -f 2 | tr -d "\n")
|
| 9 |
+
argilla_password=$(htpasswd -nbB "" "$ARGILLA_PASSWORD" | cut -d ":" -f 2 | tr -d "\n")
|
| 10 |
+
|
| 11 |
# Create users.yml file
|
| 12 |
echo "Creating users schema"
|
| 13 |
cat >"$HOME"/users.yml <<EOF
|
| 14 |
- username: "team"
|
| 15 |
+
api_key: $TEAM_API_KEY
|
| 16 |
full_name: Team
|
| 17 |
email: team@argilla.io
|
| 18 |
+
hashed_password: $team_password
|
| 19 |
workspaces: []
|
| 20 |
|
| 21 |
- username: "argilla"
|
| 22 |
+
api_key: $ARGILLA_API_KEY
|
| 23 |
full_name: Argilla
|
| 24 |
email: argilla@argilla.io
|
| 25 |
+
hashed_password: $argilla_password
|
| 26 |
workspaces: ["team"]
|
| 27 |
EOF
|
| 28 |
|
| 29 |
+
# Start Elasticsearch
|
| 30 |
+
echo "Starting Elasticsearch"
|
| 31 |
+
elasticsearch 1>/dev/null 2>/dev/null &
|
| 32 |
+
|
| 33 |
echo "Waiting for elasticsearch to start"
|
| 34 |
sleep 15
|
| 35 |
|
| 36 |
+
# Load data
|
| 37 |
+
if [ "$LOAD_DATA_ENABLE" == "true" ]; then
|
| 38 |
+
echo "Starting to load data"
|
| 39 |
+
python3.9 /load_data.py "$TEAM_API_KEY" &
|
| 40 |
+
fi
|
| 41 |
+
|
| 42 |
# Start Argilla
|
| 43 |
echo "Starting Argilla"
|
| 44 |
uvicorn argilla:app --host "0.0.0.0"
|