File size: 5,175 Bytes
ec03850
 
 
 
 
 
1ed16aa
 
 
 
 
 
 
ec03850
 
 
1ed16aa
ec03850
 
1ed16aa
ec03850
 
 
 
1ed16aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec03850
 
1ed16aa
 
ec03850
1ed16aa
 
ec03850
 
1ed16aa
ec03850
 
 
 
 
 
1ed16aa
 
 
ec03850
 
 
 
 
 
 
 
 
 
 
1ed16aa
 
 
 
 
ec03850
1ed16aa
 
 
 
ec03850
 
 
 
 
 
 
 
1ed16aa
ec03850
 
 
 
 
 
 
 
1ed16aa
 
 
 
ec03850
1ed16aa
 
 
 
ec03850
 
1ed16aa
 
 
ec03850
 
 
 
 
 
 
1ed16aa
ec03850
1ed16aa
ec03850
1ed16aa
 
ec03850
1ed16aa
 
ec03850
 
1ed16aa
ec03850
 
 
 
1ed16aa
ec03850
 
 
 
 
 
 
 
 
1ed16aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os, random, re, torch
from typing import List, Tuple
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler

# =========================
# SPEED PRESET
# =========================
# Use SD Turbo (1.5) – optimized for very few steps on CPU
DEFAULT_MODEL_ID = "stabilityai/sd-turbo"
MODEL_ID = os.getenv("MODEL_ID", DEFAULT_MODEL_ID)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32

# Short NSFW guardrail (block, no blur)
NSFW_TERMS = [
    r"\bnsfw\b", r"\bnude\b", r"\bnudity\b", r"\bsex\b", r"\bexplicit\b", r"\bporn\b",
    r"\bboobs\b", r"\bbutt\b", r"\bass\b", r"\bnaked\b", r"\btits\b",
    r"\b18\+\b", r"\berotic\b", r"\bfetish\b"
]
NSFW_REGEX = re.compile("|".join(NSFW_TERMS), flags=re.IGNORECASE)

def _blocked_tile(reason: str, w=384, h=384) -> Image.Image:
    img = Image.new("RGB", (w, h), (18, 20, 26))
    d = ImageDraw.Draw(img)
    text = f"BLOCKED\n{reason}"
    try:
        font = ImageFont.truetype("DejaVuSans-Bold.ttf", 26)
    except:
        font = ImageFont.load_default()
    box = d.multiline_textbbox((0,0), text, font=font, align="center")
    tw, th = box[2]-box[0], box[3]-box[1]
    d.multiline_text(((w-tw)//2, (h-th)//2), text, font=font, fill=(255,255,255), align="center")
    return img

def _is_nsfw(s: str) -> bool:
    return bool(NSFW_REGEX.search(s or ""))

# -------------------------
# Load pipeline (fast path)
# -------------------------
torch.set_grad_enabled(False)

pipe = StableDiffusionPipeline.from_pretrained(
    MODEL_ID,
    torch_dtype=DTYPE,
    safety_checker=None  # let model config handle; we block explicitly on prompts
)

# Turbo still benefits from DPMSolver for CPU
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

if DEVICE == "cuda":
    pipe = pipe.to("cuda")
    pipe.enable_attention_slicing()
    pipe.enable_vae_slicing()
else:
    pipe = pipe.to("cpu")

# -------------------------
# Generate fn (kept lean)
# -------------------------
def generate(
    prompt: str,
    negative_prompt: str,
    steps: int,
    guidance: float,
    width: int,
    height: int,
    seed: int,
    batch_size: int
) -> Tuple[List[Image.Image], str]:
    if not prompt.strip():
        return [], "Add a prompt first."

    # block obvious NSFW prompts
    if _is_nsfw(prompt) or _is_nsfw(negative_prompt or ""):
        return [_blocked_tile("NSFW prompt detected", width, height)], "Blocked: NSFW prompt."

    # SD-Turbo is designed for tiny step counts + low/zero CFG
    # guard rails on parameters
    steps = max(1, min(int(steps), 12))
    guidance = max(0.0, min(float(guidance), 2.0))

    # Seed
    if seed < 0:
        seed = random.randint(0, 2**31 - 1)
    generator = torch.Generator(device=DEVICE).manual_seed(seed)

    out = pipe(
        prompt=prompt,
        negative_prompt=(negative_prompt or None),
        num_inference_steps=steps,
        guidance_scale=guidance,
        width=width,
        height=height,
        num_images_per_prompt=batch_size,
        generator=generator
    )

    imgs = out.images
    # Some sd-turbo configs may not return nsfw flags; we already block on prompt
    msg = f"Model: {MODEL_ID} • Seed: {seed} • Steps: {steps} • CFG: {guidance}{width}x{height} • Batch: {batch_size}"
    return imgs, msg

# -------------------------
# UI (defaults tuned for CPU)
# -------------------------
with gr.Blocks(title="VibeForge — Fast (CPU-friendly) Image Gen") as demo:
    gr.Markdown(
        """
# VibeForge ⚒️
**Fast, clean image generation (CPU-friendly).**  
Uses **SD-Turbo** tuned for low steps. NSFW inputs are blocked.
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="a neon-lit lighthouse on a stormy cliff at night, cinematic, volumetric fog, high contrast"
            )
            negative = gr.Textbox(label="Negative Prompt", placeholder="low quality, watermark, overexposed")
            with gr.Row():
                steps = gr.Slider(1, 12, value=4, step=1, label="Steps (SD-Turbo sweet spot: 2-6)")
                guidance = gr.Slider(0.0, 2.0, value=0.5, step=0.1, label="CFG (SD-Turbo likes low)")
            with gr.Row():
                width = gr.Dropdown(choices=[384, 448, 512], value=384, label="Width")
                height = gr.Dropdown(choices=[384, 448, 512], value=384, label="Height")
            with gr.Row():
                seed = gr.Number(value=-1, label="Seed (-1 = random)", precision=0)
                batch = gr.Slider(1, 2, value=1, step=1, label="Batch (keep small on CPU)")

            go = gr.Button("Generate", variant="primary")

        with gr.Column(scale=5):
            gallery = gr.Gallery(label="Output", columns=2, height=448)
            info = gr.Markdown()

    go.click(
        fn=generate,
        inputs=[prompt, negative, steps, guidance, width, height, seed, batch],
        outputs=[gallery, info]
    )

if __name__ == "__main__":
    demo.launch()