Spaces:
Sleeping
Sleeping
File size: 13,709 Bytes
a7d2fe5 7917bda a7d2fe5 7917bda a7d2fe5 7917bda a7d2fe5 7917bda a7d2fe5 7917bda a7d2fe5 7917bda a7d2fe5 7917bda a7d2fe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
import joblib
import os
from datetime import datetime
import json
class TaskAssignmentEngine:
def __init__(self):
self.model = None
self.is_trained = False
self.results_file = "results.csv"
self.progress_file = "task_progress.json"
def load_data(self):
"""Load users, tasks, and results"""
self.users = pd.read_csv("users.csv")
self.tasks = pd.read_csv("tasks.csv")
# Load results if exists
if os.path.exists(self.results_file):
self.results = pd.read_csv(self.results_file)
else:
# Create empty results file
self.results = pd.DataFrame(columns=['task_id', 'user_id', 'time_taken', 'quality'])
self.results.to_csv(self.results_file, index=False)
# Load progress tracking
if os.path.exists(self.progress_file):
with open(self.progress_file, 'r') as f:
self.progress_data = json.load(f)
else:
self.progress_data = {}
self.save_progress_data()
print(f"β
Loaded {len(self.users)} users, {len(self.tasks)} tasks, {len(self.results)} results")
def prepare_training_data(self):
"""Convert results into training data for AI"""
if len(self.results) == 0:
print("β οΈ No results data - will use random assignment")
return None, None
if len(self.tasks) == 0 or len(self.users) == 0:
print("β οΈ No tasks or users - cannot prepare training data")
return None, None
# Merge results with task and user data
training_data = self.results.merge(self.tasks, on='task_id', how='inner').merge(self.users, on='user_id', how='inner')
if len(training_data) == 0:
print("β οΈ No valid training data after merge")
return None, None
# Create features: user_id, complexity, deadline
X = training_data[['user_id', 'complexity', 'deadline']].values
# Create target: success score (quality/5 * efficiency)
# efficiency = 1 - (time_taken / deadline)
efficiency = 1 - (training_data['time_taken'] / training_data['deadline'])
efficiency = np.clip(efficiency, 0, 1) # Keep between 0-1
quality_score = training_data['quality'] / 5.0 # Normalize to 0-1
# Success = weighted combination of quality and efficiency
y = (quality_score * 0.7 + efficiency * 0.3) # 70% quality, 30% efficiency
print(f"β
Prepared training data: {len(X)} samples")
return X, y.values
def train_model(self):
"""Train the AI model"""
X, y = self.prepare_training_data()
if X is None:
print("β οΈ No training data available")
return
# Train Random Forest model
self.model = RandomForestRegressor(n_estimators=100, random_state=42)
self.model.fit(X, y)
self.is_trained = True
# Save model
joblib.dump(self.model, 'assignment_model.pkl')
print("β
Model trained and saved")
def load_model(self):
"""Load existing model if available"""
if os.path.exists('assignment_model.pkl'):
self.model = joblib.load('assignment_model.pkl')
self.is_trained = True
print("β
Loaded existing model")
def predict_success(self, user_id, task_row):
"""Predict success probability for user-task combination"""
if not self.is_trained:
# Random assignment if no model
return np.random.random()
features = [[user_id, task_row['complexity'], task_row['deadline']]]
prediction = self.model.predict(features)[0]
return max(0, min(1, prediction)) # Ensure 0-1 range
def assign_task(self, task_id):
"""Assign a task to the best user"""
# Check if users exist
if len(self.users) == 0:
print("β No users available")
return None, None
# Check if task exists
task_df = self.tasks[self.tasks['task_id'] == task_id]
if len(task_df) == 0:
print(f"β Task {task_id} not found")
return None, None
task_row = task_df.iloc[0]
best_user = None
best_score = -1
predictions = {}
for _, user in self.users.iterrows():
user_id = user['user_id']
# Skip if user already has this task assigned
existing = self.results[
(self.results['task_id'] == task_id) &
(self.results['user_id'] == user_id)
]
if len(existing) > 0:
continue
score = self.predict_success(user_id, task_row)
predictions[user['name']] = score
if score > best_score:
best_score = score
best_user = user
print(f"\nπ― Task {task_id} ({task_row['type']}) - Complexity: {task_row['complexity']}")
print("Predictions:")
for name, score in predictions.items():
print(f" {name}: {score:.3f}")
if best_user is not None:
print(f"β
ASSIGNED to {best_user['name']} (confidence: {best_score:.3f})")
# Track assignment
self.start_task_tracking(task_id, best_user['user_id'], best_user['name'])
return best_user['user_id'], best_user['name']
else:
print(f"β No available users for this task")
return None, None
def save_progress_data(self):
"""Save progress data to JSON file"""
with open(self.progress_file, 'w') as f:
json.dump(self.progress_data, f, indent=2, default=str)
def start_task_tracking(self, task_id, user_id, user_name):
"""Start tracking a task"""
task_key = f"{task_id}_{user_id}"
task_df = self.tasks[self.tasks['task_id'] == task_id]
if len(task_df) == 0:
print(f"β Task {task_id} not found for tracking")
return
task_info = task_df.iloc[0]
self.progress_data[task_key] = {
'task_id': task_id,
'user_id': user_id,
'user_name': user_name,
'task_type': task_info['type'],
'complexity': task_info['complexity'],
'deadline': task_info['deadline'],
'start_time': datetime.now().isoformat(),
'status': 'assigned',
'progress_updates': [],
'completion_time': None
}
self.save_progress_data()
print(f"β±οΈ Started tracking: {user_name} β {task_info['type']} (Task {task_id})")
def update_task_progress(self, task_id, user_id, progress_percent, notes=""):
"""Update task progress"""
task_key = f"{task_id}_{user_id}"
if task_key not in self.progress_data:
print(f"β Task {task_id} for user {user_id} not found in tracking")
return
update = {
'timestamp': datetime.now().isoformat(),
'progress_percent': progress_percent,
'notes': notes
}
self.progress_data[task_key]['progress_updates'].append(update)
self.progress_data[task_key]['status'] = 'in_progress' if progress_percent < 100 else 'completed'
self.save_progress_data()
user_name = self.progress_data[task_key]['user_name']
task_type = self.progress_data[task_key]['task_type']
print(f"π Progress Update: {user_name} β {task_type} ({progress_percent}%)")
if notes:
print(f" Note: {notes}")
def add_result(self, task_id, user_id, time_taken, quality):
"""Add task completion result"""
# Validate task and user exist
task_df = self.tasks[self.tasks['task_id'] == task_id]
user_df = self.users[self.users['user_id'] == user_id]
if len(task_df) == 0:
print(f"β Task {task_id} not found")
return False
if len(user_df) == 0:
print(f"β User {user_id} not found")
return False
# Update progress tracking with completion
task_key = f"{task_id}_{user_id}"
completion_time = datetime.now()
if task_key in self.progress_data:
self.progress_data[task_key]['completion_time'] = completion_time.isoformat()
self.progress_data[task_key]['status'] = 'completed'
self.progress_data[task_key]['actual_time_taken'] = time_taken
# Calculate how long it actually took from start
start_time = datetime.fromisoformat(self.progress_data[task_key]['start_time'])
actual_duration = (completion_time - start_time).total_seconds() / 3600 # hours
self.progress_data[task_key]['actual_duration'] = round(actual_duration, 2)
self.save_progress_data()
new_result = {
'task_id': task_id,
'user_id': user_id,
'time_taken': time_taken,
'quality': quality
}
# Add to results dataframe
self.results = pd.concat([self.results, pd.DataFrame([new_result])], ignore_index=True)
# Save to CSV
self.results.to_csv(self.results_file, index=False)
# Get names for display
task_name = task_df['type'].iloc[0]
user_name = user_df['name'].iloc[0]
print(f"β
Task Completed: {user_name} β {task_name} in {time_taken}h with quality {quality}/5")
# Show completion analytics
if task_key in self.progress_data:
actual_duration = self.progress_data[task_key]['actual_duration']
deadline = self.progress_data[task_key]['deadline']
efficiency = (deadline - time_taken) / deadline * 100
print(f" π Analytics: {actual_duration}h real time, {efficiency:+.1f}% vs deadline")
def show_stats(self):
"""Show system statistics"""
if len(self.results) == 0:
print("π No results yet - system ready for first assignments")
return
print("\nπ SYSTEM STATISTICS")
print(f"Total completed tasks: {len(self.results)}")
print(f"Average quality: {self.results['quality'].mean():.2f}/5")
print(f"Average time taken: {self.results['time_taken'].mean():.1f}h")
# User performance
user_stats = self.results.merge(self.users, on='user_id').groupby('name').agg({
'quality': 'mean',
'time_taken': 'mean',
'task_id': 'count'
}).round(2)
user_stats.columns = ['Avg Quality', 'Avg Time', 'Tasks Done']
print("\nπ₯ USER PERFORMANCE")
print(user_stats)
def get_user_skills(self):
"""Discover user skills automatically"""
if len(self.results) == 0:
print("No data to analyze skills yet")
return
# Merge with all data
full_data = self.results.merge(self.tasks, on='task_id').merge(self.users, on='user_id')
print("\nπ― DISCOVERED SKILLS")
for user_name in full_data['name'].unique():
user_data = full_data[full_data['name'] == user_name]
print(f"\n{user_name}:")
for task_type in user_data['type'].unique():
type_data = user_data[user_data['type'] == task_type]
avg_quality = type_data['quality'].mean()
avg_time = type_data['time_taken'].mean()
skill_level = "Expert" if avg_quality >= 4 else "Good" if avg_quality >= 3 else "Learning"
print(f" {task_type}: {avg_quality:.1f}/5 quality, {avg_time:.1f}h avg ({skill_level})")
def show_active_tasks(self):
"""Show currently active/assigned tasks"""
if not self.progress_data:
print("π No active tasks")
return
active_tasks = [task for task in self.progress_data.values()
if task['status'] in ['assigned', 'in_progress']]
if not active_tasks:
print("π No active tasks")
return
print("\nπ ACTIVE TASKS")
print("-" * 50)
for task in active_tasks:
start_time = datetime.fromisoformat(task['start_time'])
time_elapsed = (datetime.now() - start_time).total_seconds() / 3600
status_icon = "π" if task['status'] == 'in_progress' else "π"
print(f"{status_icon} Task {task['task_id']}: {task['user_name']} β {task['task_type']}")
print(f" Complexity: {task['complexity']}, Deadline: {task['deadline']}h")
print(f" Started: {time_elapsed:.1f}h ago")
if task['progress_updates']:
latest = task['progress_updates'][-1]
print(f" Progress: {latest['progress_percent']}%")
if latest['notes']:
print(f" Note: {latest['notes']}")
print("-" * 50) |