Spaces:
Running
on
Zero
Running
on
Zero
rizavelioglu
commited on
Commit
·
3050d2d
1
Parent(s):
85dc5d9
add explanations, fix img processing, add another vae, examples
Browse files- app.py +47 -17
- examples/01967_00.jpg +0 -0
- examples/03032_00.jpg +0 -0
- examples/048395_0.jpg +0 -0
- examples/048399_0.jpg +0 -0
- examples/048400_0.jpg +0 -0
- examples/048410_0.jpg +0 -0
- examples/048436_0.jpg +0 -0
- examples/051807_0.jpg +0 -0
- examples/051808_0.jpg +0 -0
- examples/051836_0.jpg +0 -0
- examples/053055_0.jpg +0 -0
- examples/053114_0.jpg +0 -0
- examples/053137_0.jpg +0 -0
- examples/07089_00.jpg +0 -0
- examples/13136_00.jpg +0 -0
- examples/13331_00.jpg +0 -0
- examples/13988_00.jpg +0 -0
- examples/14009_00.jpg +0 -0
- examples/14022_00.jpg +0 -0
- examples/14533_00.jpg +0 -0
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import torch
|
|
| 3 |
from diffusers import AutoencoderKL
|
| 4 |
import torchvision.transforms.v2 as transforms
|
| 5 |
from torchvision.io import read_image
|
| 6 |
-
from typing import
|
| 7 |
import os
|
| 8 |
from huggingface_hub import login
|
| 9 |
|
|
@@ -11,17 +11,27 @@ from huggingface_hub import login
|
|
| 11 |
hf_token = os.getenv("access_token")
|
| 12 |
login(token=hf_token)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
class VAETester:
|
| 15 |
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
| 16 |
self.device = device
|
| 17 |
self.input_transform = transforms.Compose([
|
| 18 |
-
|
| 19 |
transforms.Resize((512, 512), antialias=True),
|
| 20 |
transforms.ToDtype(torch.float32, scale=True),
|
| 21 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
| 22 |
])
|
| 23 |
self.base_transform = transforms.Compose([
|
| 24 |
-
|
| 25 |
transforms.Resize((512, 512), antialias=True),
|
| 26 |
transforms.ToDtype(torch.float32, scale=True),
|
| 27 |
])
|
|
@@ -33,9 +43,10 @@ class VAETester:
|
|
| 33 |
def _load_all_vaes(self) -> Dict[str, AutoencoderKL]:
|
| 34 |
"""Load all available VAE models"""
|
| 35 |
vae_configs = {
|
| 36 |
-
"
|
| 37 |
-
"
|
| 38 |
-
"
|
|
|
|
| 39 |
"FLUX.1-dev": ("black-forest-labs/FLUX.1-dev", "vae")
|
| 40 |
}
|
| 41 |
|
|
@@ -79,7 +90,6 @@ class VAETester:
|
|
| 79 |
results[name] = (diff_img, recon_img, score)
|
| 80 |
return results
|
| 81 |
|
| 82 |
-
|
| 83 |
# Initialize tester
|
| 84 |
tester = VAETester()
|
| 85 |
|
|
@@ -96,21 +106,31 @@ def test_all_vaes(image_path: str, tolerance: float):
|
|
| 96 |
|
| 97 |
for name in tester.vae_models.keys():
|
| 98 |
diff_img, recon_img, score = results[name]
|
| 99 |
-
diff_images.append(diff_img)
|
| 100 |
-
recon_images.append(recon_img)
|
| 101 |
-
scores.append(f"{name}: {score:.
|
| 102 |
|
| 103 |
-
return diff_images, recon_images, scores
|
| 104 |
|
| 105 |
except Exception as e:
|
| 106 |
error_msg = f"Error: {str(e)}"
|
| 107 |
-
return [None], [None],
|
| 108 |
|
|
|
|
| 109 |
|
| 110 |
# Gradio interface
|
| 111 |
-
with gr.Blocks(title="VAE Performance Tester") as demo:
|
| 112 |
-
gr.Markdown("# VAE
|
| 113 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
with gr.Row():
|
| 116 |
with gr.Column(scale=1):
|
|
@@ -120,7 +140,8 @@ with gr.Blocks(title="VAE Performance Tester") as demo:
|
|
| 120 |
maximum=0.5,
|
| 121 |
value=0.1,
|
| 122 |
step=0.01,
|
| 123 |
-
label="Difference Tolerance"
|
|
|
|
| 124 |
)
|
| 125 |
submit_btn = gr.Button("Test All VAEs")
|
| 126 |
|
|
@@ -128,7 +149,15 @@ with gr.Blocks(title="VAE Performance Tester") as demo:
|
|
| 128 |
with gr.Row():
|
| 129 |
diff_gallery = gr.Gallery(label="Difference Maps", columns=4, height=512)
|
| 130 |
recon_gallery = gr.Gallery(label="Reconstructed Images", columns=4, height=512)
|
| 131 |
-
scores_output = gr.Textbox(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
submit_btn.click(
|
| 134 |
fn=test_all_vaes,
|
|
@@ -138,3 +167,4 @@ with gr.Blocks(title="VAE Performance Tester") as demo:
|
|
| 138 |
|
| 139 |
if __name__ == "__main__":
|
| 140 |
demo.launch()
|
|
|
|
|
|
| 3 |
from diffusers import AutoencoderKL
|
| 4 |
import torchvision.transforms.v2 as transforms
|
| 5 |
from torchvision.io import read_image
|
| 6 |
+
from typing import Dict
|
| 7 |
import os
|
| 8 |
from huggingface_hub import login
|
| 9 |
|
|
|
|
| 11 |
hf_token = os.getenv("access_token")
|
| 12 |
login(token=hf_token)
|
| 13 |
|
| 14 |
+
class PadToSquare:
|
| 15 |
+
"""Custom transform to pad an image to square dimensions"""
|
| 16 |
+
def __call__(self, img):
|
| 17 |
+
_, h, w = img.shape # Get the original dimensions
|
| 18 |
+
max_side = max(h, w)
|
| 19 |
+
pad_h = (max_side - h) // 2
|
| 20 |
+
pad_w = (max_side - w) // 2
|
| 21 |
+
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
|
| 22 |
+
return transforms.functional.pad(img, padding, padding_mode="edge")
|
| 23 |
+
|
| 24 |
class VAETester:
|
| 25 |
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
| 26 |
self.device = device
|
| 27 |
self.input_transform = transforms.Compose([
|
| 28 |
+
PadToSquare(),
|
| 29 |
transforms.Resize((512, 512), antialias=True),
|
| 30 |
transforms.ToDtype(torch.float32, scale=True),
|
| 31 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
| 32 |
])
|
| 33 |
self.base_transform = transforms.Compose([
|
| 34 |
+
PadToSquare(),
|
| 35 |
transforms.Resize((512, 512), antialias=True),
|
| 36 |
transforms.ToDtype(torch.float32, scale=True),
|
| 37 |
])
|
|
|
|
| 43 |
def _load_all_vaes(self) -> Dict[str, AutoencoderKL]:
|
| 44 |
"""Load all available VAE models"""
|
| 45 |
vae_configs = {
|
| 46 |
+
"stable-diffusion-v1-4": ("CompVis/stable-diffusion-v1-4", "vae"),
|
| 47 |
+
"sd-vae-ft-mse": ("stabilityai/sd-vae-ft-mse", ""),
|
| 48 |
+
"sdxl-vae": ("stabilityai/sdxl-vae", ""),
|
| 49 |
+
"stable-diffusion-3-medium": ("stabilityai/stable-diffusion-3-medium-diffusers", "vae"),
|
| 50 |
"FLUX.1-dev": ("black-forest-labs/FLUX.1-dev", "vae")
|
| 51 |
}
|
| 52 |
|
|
|
|
| 90 |
results[name] = (diff_img, recon_img, score)
|
| 91 |
return results
|
| 92 |
|
|
|
|
| 93 |
# Initialize tester
|
| 94 |
tester = VAETester()
|
| 95 |
|
|
|
|
| 106 |
|
| 107 |
for name in tester.vae_models.keys():
|
| 108 |
diff_img, recon_img, score = results[name]
|
| 109 |
+
diff_images.append((diff_img, name))
|
| 110 |
+
recon_images.append((recon_img, name))
|
| 111 |
+
scores.append(f"{name:<25}: {score:.1f}")
|
| 112 |
|
| 113 |
+
return diff_images, recon_images, "\n".join(scores)
|
| 114 |
|
| 115 |
except Exception as e:
|
| 116 |
error_msg = f"Error: {str(e)}"
|
| 117 |
+
return [None], [None], error_msg
|
| 118 |
|
| 119 |
+
examples = [f"examples/{img_filename}" for img_filename in sorted(os.listdir("examples/"))]
|
| 120 |
|
| 121 |
# Gradio interface
|
| 122 |
+
with gr.Blocks(title="VAE Performance Tester", css=".monospace-text {font-family: 'Courier New', Courier, monospace;}") as demo:
|
| 123 |
+
gr.Markdown("# VAE Comparison Tool")
|
| 124 |
+
gr.Markdown("""
|
| 125 |
+
Upload an image or select an example to compare how different VAEs reconstruct it. Here's what happens:
|
| 126 |
+
1. The image is padded to a square and resized to 512x512 pixels.
|
| 127 |
+
2. Each VAE encodes the image into a latent space and decodes it back.
|
| 128 |
+
3. The tool then generates:
|
| 129 |
+
- **Difference Maps**: Black-and-white images showing where the reconstruction differs from the original (white areas indicate differences above the tolerance threshold).
|
| 130 |
+
- **Reconstructed Images**: The outputs from each VAE.
|
| 131 |
+
- **Sum of Differences**: A numerical score for each VAE, measuring the total difference in pixels exceeding the tolerance.
|
| 132 |
+
Use the tolerance slider to adjust the sensitivity.
|
| 133 |
+
""")
|
| 134 |
|
| 135 |
with gr.Row():
|
| 136 |
with gr.Column(scale=1):
|
|
|
|
| 140 |
maximum=0.5,
|
| 141 |
value=0.1,
|
| 142 |
step=0.01,
|
| 143 |
+
label="Difference Tolerance",
|
| 144 |
+
info="Low tolerance (e.g., 0.01): Highly sensitive, flags small deviations. High tolerance (e.g., 0.5): Less sensitive, flags only large deviations, showing fewer differences.",
|
| 145 |
)
|
| 146 |
submit_btn = gr.Button("Test All VAEs")
|
| 147 |
|
|
|
|
| 149 |
with gr.Row():
|
| 150 |
diff_gallery = gr.Gallery(label="Difference Maps", columns=4, height=512)
|
| 151 |
recon_gallery = gr.Gallery(label="Reconstructed Images", columns=4, height=512)
|
| 152 |
+
scores_output = gr.Textbox(label="Sum of difference (lower is better reconstruction)", lines=5, elem_classes="monospace-text")
|
| 153 |
+
|
| 154 |
+
if examples:
|
| 155 |
+
with gr.Column():
|
| 156 |
+
example_gallery = gr.Examples(
|
| 157 |
+
examples=examples,
|
| 158 |
+
inputs=image_input,
|
| 159 |
+
label="Example Images"
|
| 160 |
+
)
|
| 161 |
|
| 162 |
submit_btn.click(
|
| 163 |
fn=test_all_vaes,
|
|
|
|
| 167 |
|
| 168 |
if __name__ == "__main__":
|
| 169 |
demo.launch()
|
| 170 |
+
|
examples/01967_00.jpg
ADDED
|
examples/03032_00.jpg
ADDED
|
examples/048395_0.jpg
ADDED
|
examples/048399_0.jpg
ADDED
|
examples/048400_0.jpg
ADDED
|
examples/048410_0.jpg
ADDED
|
examples/048436_0.jpg
ADDED
|
examples/051807_0.jpg
ADDED
|
examples/051808_0.jpg
ADDED
|
examples/051836_0.jpg
ADDED
|
examples/053055_0.jpg
ADDED
|
examples/053114_0.jpg
ADDED
|
examples/053137_0.jpg
ADDED
|
examples/07089_00.jpg
ADDED
|
examples/13136_00.jpg
ADDED
|
examples/13331_00.jpg
ADDED
|
examples/13988_00.jpg
ADDED
|
examples/14009_00.jpg
ADDED
|
examples/14022_00.jpg
ADDED
|
examples/14533_00.jpg
ADDED
|