Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import joblib | |
| from transformers import pipeline | |
| # Load model dan pipeline | |
| model = joblib.load("ensemble_model.pkl") | |
| vectorizer = joblib.load("vectorizer.pkl") | |
| qa_pipe = pipeline("question-answering", model="Rifky/IndoBERT-QA") | |
| ner_pipe = pipeline("ner", model="cahya/bert-base-indonesian-NER", aggregation_strategy="simple") | |
| # --- Fungsi --- | |
| def detect_hoax(text): | |
| vec = vectorizer.transform([text]) | |
| result = model.predict(vec)[0] | |
| if result == 1: | |
| return "<div style='background-color:#e74c3c; color:white; padding:10px; border-radius:5px'>HOAX</div>" | |
| else: | |
| return "<div style='background-color:#27ae60; color:white; padding:10px; border-radius:5px'>BUKAN HOAX</div>" | |
| def qa_manual(message, history, context): | |
| if not context: | |
| return history + [[message, "Mohon isi teks berita terlebih dahulu."]] | |
| result = qa_pipe(question=message, context=context) | |
| return history + [[message, result["answer"]]] | |
| def ner(text): | |
| entities = ner_pipe(text) | |
| styled = "" | |
| color_map = { | |
| "PER": "#ffd1dc", "ORG": "#d1e0ff", "LOC": "#d1ffd1", "MISC": "#fdfd96" | |
| } | |
| for ent in entities: | |
| color = color_map.get(ent["entity_group"], "#eee") | |
| styled += f"<mark style='background-color:{color}; padding:2px; margin:2px'>{ent['word']} <small>({ent['entity_group']})</small></mark> " | |
| return styled | |
| # --- UI Gradio --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Hoax Detector App") | |
| context_input = gr.Textbox(label="Teks Berita / Konteks", lines=5, placeholder="Masukkan teks berita di sini...") | |
| with gr.Tab("Deteksi Hoaks"): | |
| detect_btn = gr.Button("DETEKSI") | |
| hoax_output = gr.HTML() | |
| detect_btn.click(fn=detect_hoax, inputs=context_input, outputs=hoax_output) | |
| with gr.Tab("QA"): | |
| #gr.Markdown("### Tanya Jawab Berdasarkan Teks Berita") | |
| qa_question = gr.Textbox(placeholder="Tulis pertanyaan...", label="Pertanyaan") | |
| qa_btn = gr.Button("KIRIM") | |
| qa_history = gr.Chatbot(label="Riwayat Tanya Jawab") | |
| qa_state = gr.State([]) | |
| qa_btn.click( | |
| fn=qa_manual, | |
| inputs=[qa_question, qa_state, context_input], | |
| outputs=[qa_history], | |
| show_progress=False | |
| ).then(fn=lambda h: h, inputs=qa_history, outputs=qa_state) | |
| with gr.Tab("NER"): | |
| ner_btn = gr.Button("Ekstrak Entitas") | |
| ner_result = gr.HTML() | |
| ner_btn.click(fn=ner, inputs=context_input, outputs=ner_result) | |
| demo.launch() | |