Spaces:
Running
Running
File size: 9,688 Bytes
3c92819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import os
import io
import wave
import time
from typing import Optional
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from dotenv import load_dotenv
from .model_loader import Maya1Model
from .prompt_builder import Maya1PromptBuilder
from .snac_decoder import SNACDecoder
from .pipeline import Maya1Pipeline
from .streaming_pipeline import Maya1SlidingWindowPipeline
from .constants import (
DEFAULT_TEMPERATURE,
DEFAULT_TOP_P,
DEFAULT_MAX_TOKENS,
DEFAULT_REPETITION_PENALTY,
AUDIO_SAMPLE_RATE,
)
# Timeout settings (seconds)
GENERATE_TIMEOUT = 60
# Load environment variables
load_dotenv()
# Initialize FastAPI app
app = FastAPI(
title="Maya1 TTS API",
description="Open source TTS inference for Maya1",
version="1.0.0",
docs_url=None,
redoc_url=None,
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global state
model = None
prompt_builder = None
snac_decoder = None
pipeline = None
streaming_pipeline = None
# ============================================================================
# Startup/Shutdown
# ============================================================================
@app.on_event("startup")
async def startup_event():
"""Initialize model on startup."""
global model, prompt_builder, snac_decoder, pipeline, streaming_pipeline
print("\n" + "="*60)
print(" Starting Maya1 TTS API Server")
print("="*60 + "\n")
# Initialize components
model = Maya1Model()
prompt_builder = Maya1PromptBuilder(model.tokenizer, model)
# Initialize SNAC decoder
snac_decoder = SNACDecoder(enable_batching=True, max_batch_size=64, batch_timeout_ms=15)
await snac_decoder.start_batch_processor()
# Initialize pipelines
pipeline = Maya1Pipeline(model, prompt_builder, snac_decoder)
streaming_pipeline = Maya1SlidingWindowPipeline(model, prompt_builder, snac_decoder)
print("\n" + "="*60)
print("Maya1 TTS API Server Ready")
print("="*60 + "\n")
@app.on_event("shutdown")
async def shutdown_event():
"""Cleanup on shutdown."""
print("\nShutting down Maya1 TTS API Server")
if snac_decoder and snac_decoder.is_running:
await snac_decoder.stop_batch_processor()
# ============================================================================
# Utility Functions
# ============================================================================
def create_wav_header(sample_rate: int = 24000, channels: int = 1, bits_per_sample: int = 16, data_size: int = 0) -> bytes:
"""Create WAV file header."""
import struct
byte_rate = sample_rate * channels * bits_per_sample // 8
block_align = channels * bits_per_sample // 8
header = struct.pack(
'<4sI4s4sIHHIIHH4sI',
b'RIFF',
36 + data_size,
b'WAVE',
b'fmt ',
16,
1,
channels,
sample_rate,
byte_rate,
block_align,
bits_per_sample,
b'data',
data_size
)
return header
# ============================================================================
# Request/Response Models
# ============================================================================
class TTSRequest(BaseModel):
"""TTS generation request."""
description: str = Field(
...,
description="Voice description (e.g., 'Male voice in their 30s with american accent')"
)
text: str = Field(
...,
description="Text to synthesize (can include <emotion> tags)"
)
temperature: Optional[float] = Field(
default=DEFAULT_TEMPERATURE,
description="Sampling temperature"
)
top_p: Optional[float] = Field(
default=DEFAULT_TOP_P,
description="Nucleus sampling"
)
max_tokens: Optional[int] = Field(
default=DEFAULT_MAX_TOKENS,
description="Maximum tokens to generate"
)
repetition_penalty: Optional[float] = Field(
default=DEFAULT_REPETITION_PENALTY,
description="Repetition penalty"
)
seed: Optional[int] = Field(
default=None,
description="Random seed for reproducibility",
ge=0,
)
stream: bool = Field(
default=False,
description="Stream audio (True) or return complete WAV (False)"
)
# ============================================================================
# Endpoints
# ============================================================================
@app.get("/")
async def root():
"""Root endpoint."""
return {
"service": "Maya1 TTS API",
"version": "1.0.0",
"status": "running",
"model": "Maya1-Voice (open source)",
"endpoints": {
"generate": "/v1/tts/generate (POST)",
"health": "/health (GET)",
},
}
@app.get("/health")
async def health_check():
"""Health check endpoint."""
return {
"status": "healthy",
"model": "Maya1-Voice",
"timestamp": time.time(),
}
# ============================================================================
# TTS Generation Endpoint
# ============================================================================
@app.post("/v1/tts/generate")
async def generate_tts(request: TTSRequest):
"""Generate TTS audio from description and text."""
try:
# Route to streaming or non-streaming
if request.stream:
return await _generate_tts_streaming(
description=request.description,
text=request.text,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens,
repetition_penalty=request.repetition_penalty,
seed=request.seed,
)
else:
return await _generate_tts_complete(
description=request.description,
text=request.text,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens,
repetition_penalty=request.repetition_penalty,
seed=request.seed,
)
except HTTPException:
raise
except Exception as e:
print(f" Error: {e}")
raise HTTPException(status_code=500, detail=str(e))
async def _generate_tts_complete(
description: str,
text: str,
temperature: float,
top_p: float,
max_tokens: int,
repetition_penalty: float,
seed: Optional[int],
):
"""Generate complete WAV file (non-streaming)."""
try:
import asyncio
# Generate audio
audio_bytes = await asyncio.wait_for(
pipeline.generate_speech(
description=description,
text=text,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
repetition_penalty=repetition_penalty,
seed=seed,
),
timeout=GENERATE_TIMEOUT
)
if audio_bytes is None:
raise Exception("Audio generation failed")
# Create WAV file
wav_buffer = io.BytesIO()
with wave.open(wav_buffer, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(AUDIO_SAMPLE_RATE)
wav_file.writeframes(audio_bytes)
wav_buffer.seek(0)
return StreamingResponse(
wav_buffer,
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=output.wav"}
)
except asyncio.TimeoutError:
raise HTTPException(status_code=504, detail="Generation timeout")
async def _generate_tts_streaming(
description: str,
text: str,
temperature: float,
top_p: float,
max_tokens: int,
repetition_penalty: float,
seed: Optional[int],
):
"""Generate streaming audio."""
start_time = time.time()
first_audio_time = None
async def audio_stream_generator():
"""Generate audio stream with WAV header."""
nonlocal first_audio_time
# Send WAV header first
yield create_wav_header(sample_rate=AUDIO_SAMPLE_RATE, channels=1, bits_per_sample=16)
# Stream audio chunks
async for audio_chunk in streaming_pipeline.generate_speech_stream(
description=description,
text=text,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
repetition_penalty=repetition_penalty,
seed=seed,
):
if first_audio_time is None:
first_audio_time = time.time()
ttfb_ms = (first_audio_time - start_time) * 1000
print(f"⏱️ TTFB: {ttfb_ms:.1f}ms")
yield audio_chunk
try:
return StreamingResponse(
audio_stream_generator(),
media_type="audio/wav",
headers={"Cache-Control": "no-cache"}
)
except Exception as e:
print(f"Streaming error: {e}")
raise HTTPException(status_code=500, detail=str(e))
# For running directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
) |