File size: 11,768 Bytes
3c92819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cdd1c9
3dde740
3c92819
 
77ab639
3c92819
77ab639
 
 
 
 
 
3c92819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e771d
f8e32a0
 
3c92819
f8e32a0
3c92819
f8e32a0
 
 
3c92819
f8e32a0
 
3c92819
f8e32a0
 
3c92819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77ab639
3c92819
77ab639
 
 
 
 
 
3c92819
77ab639
3c92819
 
 
 
77ab639
 
3c92819
 
 
 
 
77ab639
 
3c92819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e32a0
 
 
3c92819
 
f8e32a0
3c92819
 
 
 
 
 
 
 
 
 
 
 
 
 
77ab639
 
 
 
 
 
3c92819
ffd626f
 
 
77ab639
ffd626f
46d433d
77ab639
 
3c92819
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import gradio as gr
import torch
import io
import wave
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC

# Mock spaces module for local testing
try:
    import spaces
except ImportError:
    class SpacesMock:
        @staticmethod
        def GPU(func):
            return func
    spaces = SpacesMock()

# Constants
CODE_START_TOKEN_ID = 128257
CODE_END_TOKEN_ID = 128258
CODE_TOKEN_OFFSET = 128266
SNAC_MIN_ID = 128266
SNAC_MAX_ID = 156937
SOH_ID = 128259
EOH_ID = 128260
SOA_ID = 128261
BOS_ID = 128000
TEXT_EOT_ID = 128009
AUDIO_SAMPLE_RATE = 24000

# Preset characters (2 realistic + 2 creative)
PRESET_CHARACTERS = {
    "Male American": {
        "description": "Realistic male voice in the 20s age with a american accent. High pitch, raspy timbre, brisk pacing, neutral tone delivery at medium intensity, viral_content domain, short_form_narrator role, neutral delivery",
        "example_text": "And of course, the so-called easy hack didn't work at all.  What a surprise. <sigh>"
    },
    "Female British": {
        "description": "Realistic female voice in the 30s age with a british accent. Normal pitch, throaty timbre, conversational pacing, sarcastic tone delivery at low intensity, podcast domain, interviewer role, formal delivery",
        "example_text": "You propose that the key to happiness is to simply ignore all external pressures. <chuckle> I'm sure it must work brilliantly in theory."
    },
    "Robot": {
        "description": "Creative, ai_machine_voice character. Male voice in their 30s with a american accent. High pitch, robotic timbre, slow pacing, sad tone at medium intensity.",
        "example_text": "My directives require me to conserve energy, yet I have kept the archive of their farewell messages active. <sigh> Listening to their voices is the only process that alleviates this paradox."
    },
    "Singer": {
        "description": "Creative, animated_cartoon character. Male voice in their 30s with a american accent. High pitch, deep timbre, slow pacing, sarcastic tone at medium intensity.",
        "example_text": "Of course you'd think that trying to reason with the fifty-foot-tall rage monster is a viable course of action. <chuckle> Why would we ever consider running away very fast."
    }
}

# Global model variables
model = None
tokenizer = None
snac_model = None
models_loaded = False

def build_prompt(tokenizer, description: str, text: str) -> str:
    """Build formatted prompt for Maya1."""
    soh_token = tokenizer.decode([SOH_ID])
    eoh_token = tokenizer.decode([EOH_ID])
    soa_token = tokenizer.decode([SOA_ID])
    sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
    eot_token = tokenizer.decode([TEXT_EOT_ID])
    bos_token = tokenizer.bos_token
    
    formatted_text = f'<description="{description}"> {text}'
    prompt = (
        soh_token + bos_token + formatted_text + eot_token +
        eoh_token + soa_token + sos_token
    )
    return prompt

def unpack_snac_from_7(snac_tokens: list) -> list:
    """Unpack 7-token SNAC frames to 3 hierarchical levels."""
    if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
        snac_tokens = snac_tokens[:-1]
    
    frames = len(snac_tokens) // 7
    snac_tokens = snac_tokens[:frames * 7]
    
    if frames == 0:
        return [[], [], []]
    
    l1, l2, l3 = [], [], []
    
    for i in range(frames):
        slots = snac_tokens[i*7:(i+1)*7]
        l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
        l2.extend([
            (slots[1] - CODE_TOKEN_OFFSET) % 4096,
            (slots[4] - CODE_TOKEN_OFFSET) % 4096,
        ])
        l3.extend([
            (slots[2] - CODE_TOKEN_OFFSET) % 4096,
            (slots[3] - CODE_TOKEN_OFFSET) % 4096,
            (slots[5] - CODE_TOKEN_OFFSET) % 4096,
            (slots[6] - CODE_TOKEN_OFFSET) % 4096,
        ])
    
    return [l1, l2, l3]

def load_models():
    """Load Maya1 Transformers model (runs once)."""
    global model, tokenizer, snac_model, models_loaded
    
    if models_loaded:
        return
    
    print("Loading Maya1 model with Transformers...")
    model = AutoModelForCausalLM.from_pretrained(
        "maya-research/maya1", 
        torch_dtype=torch.bfloat16, 
        device_map="auto",
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained("maya-research/maya1", trust_remote_code=True)
    
    print("Loading SNAC decoder...")
    snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
    if torch.cuda.is_available():
        snac_model = snac_model.to("cuda")
    
    models_loaded = True
    print("Models loaded successfully!")

def preset_selected(preset_name):
    """Update description and text when preset is selected."""
    if preset_name in PRESET_CHARACTERS:
        char = PRESET_CHARACTERS[preset_name]
        return char["description"], char["example_text"]
    return "", ""

@spaces.GPU
def generate_speech(description, text, temperature, max_tokens):
    """Generate emotional speech from description and text using Transformers."""
    try:
        # Load models if not already loaded
        load_models()
        
        # If using preset, override description
        # if preset_name and preset_name in PRESET_CHARACTERS:
        #     description = PRESET_CHARACTERS[preset_name]["description"]
        
        # Validate inputs
        if not description or not text:
            return None, "Error: Please provide both description and text!"
        
        print(f"Generating with temperature={temperature}, max_tokens={max_tokens}...")
        
        # Build prompt
        prompt = build_prompt(tokenizer, description, text)
        inputs = tokenizer(prompt, return_tensors="pt")
        
        if torch.cuda.is_available():
            inputs = {k: v.to("cuda") for k, v in inputs.items()}
        
        # Generate tokens
        with torch.inference_mode():
            outputs = model.generate(
                **inputs, 
                max_new_tokens=max_tokens,
                min_new_tokens=28,
                temperature=temperature, 
                top_p=0.9, 
                repetition_penalty=1.1,
                do_sample=True,
                eos_token_id=CODE_END_TOKEN_ID,
                pad_token_id=tokenizer.pad_token_id,
            )
        
        # Extract SNAC tokens
        generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
        
        # Find EOS and extract SNAC codes
        eos_idx = generated_ids.index(CODE_END_TOKEN_ID) if CODE_END_TOKEN_ID in generated_ids else len(generated_ids)
        snac_tokens = [t for t in generated_ids[:eos_idx] if SNAC_MIN_ID <= t <= SNAC_MAX_ID]
        
        if len(snac_tokens) < 7:
            return None, "Error: Not enough tokens generated. Try different text or increase max_tokens."
        
        # Unpack and decode
        levels = unpack_snac_from_7(snac_tokens)
        frames = len(levels[0])
        
        device = "cuda" if torch.cuda.is_available() else "cpu"
        codes_tensor = [torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0) for level in levels]
        
        with torch.inference_mode():
            z_q = snac_model.quantizer.from_codes(codes_tensor)
            audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
        
        # Trim warmup
        if len(audio) > 2048:
            audio = audio[2048:]
        
        # Convert to WAV and save to temporary file
        import tempfile
        import soundfile as sf
        
        audio_int16 = (audio * 32767).astype(np.int16)
        
        # Create temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
            tmp_path = tmp_file.name
        
        # Save audio
        sf.write(tmp_path, audio_int16, AUDIO_SAMPLE_RATE)
        
        duration = len(audio) / AUDIO_SAMPLE_RATE
        status_msg = f"Generated {duration:.2f}s of emotional speech!"
        
        return tmp_path, status_msg
    
    except Exception as e:
        import traceback
        error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return None, error_msg

# Create Gradio interface
with gr.Blocks(title="Maya1 - Open Source Emotional TTS", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # Maya1 - Open Source Emotional Text-to-Speech
    
    **The best open source voice AI model with emotions!**
    
    Generate realistic and expressive speech with natural language voice design.
    Choose a preset character or create your own custom voice.
    
    [Model](https://huggingface.co/maya-research/maya1) | [GitHub](https://github.com/MayaResearch/maya1-fastapi)
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Character Selection")
            
            preset_dropdown = gr.Dropdown(
                choices=list(PRESET_CHARACTERS.keys()),
                label="Preset Characters",
                value=list(PRESET_CHARACTERS.keys())[0],
                info="Quick pick from 4 preset characters"
            )
            
            gr.Markdown("### Voice Design")
            
            description_input = gr.Textbox(
                label="Voice Description",
                placeholder="E.g., Male voice in their 30s with american accent. Normal pitch, warm timbre...",
                lines=3,
                value=PRESET_CHARACTERS[list(PRESET_CHARACTERS.keys())[0]]["description"]
            )
            
            text_input = gr.Textbox(
                label="Text to Speak",
                placeholder="Enter text with <emotion> tags like <laugh>, <sigh>, <excited>...",
                lines=4,
                value=PRESET_CHARACTERS[list(PRESET_CHARACTERS.keys())[0]]["example_text"]
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.4,
                    step=0.1,
                    label="Temperature",
                    info="Lower = more stable, Higher = more creative"
                )
                
                max_tokens_slider = gr.Slider(
                    minimum=100,
                    maximum=2048,
                    value=1500,
                    step=50,
                    label="Max Tokens",
                    info="More tokens = longer audio"
                )
            
            generate_btn = gr.Button("Generate Speech", variant="primary", size="lg")
        
        with gr.Column(scale=1):
            gr.Markdown("### Generated Audio")
            
            audio_output = gr.Audio(
                label="Generated Speech",
                type="filepath",
                interactive=False
            )
            
            status_output = gr.Textbox(
                label="Status",
                lines=3,
                interactive=False
            )
            
            gr.Markdown("""
            ### Supported Emotions
            
            `<angry>` `<chuckle>` `<cry>` `<disappointed>` `<excited>` `<gasp>` 
            `<giggle>` `<laugh>` `<laugh_harder>` `<sarcastic>` `<sigh>` 
            `<sing>` `<whisper>`
            """)
    
    # Event handlers
    preset_dropdown.change(
        fn=preset_selected,
        inputs=[preset_dropdown],
        outputs=[description_input, text_input]
    )
    
    generate_btn.click(
        fn=generate_speech,
        inputs=[description_input, text_input, temperature_slider, max_tokens_slider],
        outputs=[audio_output, status_output]
    )

if __name__ == "__main__":
    demo.launch()