Update main.py
Browse files
main.py
CHANGED
|
@@ -1,25 +1,22 @@
|
|
| 1 |
import httpx
|
|
|
|
|
|
|
|
|
|
| 2 |
from fastapi import FastAPI, HTTPException
|
|
|
|
| 3 |
from pydantic import BaseModel, Field
|
| 4 |
-
from typing import List
|
| 5 |
-
|
| 6 |
-
app = FastAPI(
|
| 7 |
-
title="Perplexity-like API",
|
| 8 |
-
description="An API that uses web search to answer questions with citations.",
|
| 9 |
-
version="1.0.0"
|
| 10 |
-
)
|
| 11 |
|
| 12 |
# --- API Configuration ---
|
|
|
|
| 13 |
TYPEGPT_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 14 |
-
TYPEGPT_API_KEY = "sk-oPdaZC7n1JlDq0sJ5NSSyHe7sYaeAXeEuj0wX4Lk8hlOGPF8"
|
| 15 |
SEARCH_API_URL = "https://superapis-bing.hf.space/search"
|
| 16 |
|
| 17 |
-
|
| 18 |
# --- System Prompt ---
|
| 19 |
# This prompt guides the AI to behave like a factual research assistant.
|
| 20 |
SYSTEM_PROMPT = """
|
| 21 |
You are an expert AI research assistant. Your primary goal is to provide accurate, comprehensive, and helpful answers based ONLY on the provided search results.
|
| 22 |
-
|
| 23 |
Instructions:
|
| 24 |
1. Carefully analyze the user's query and the provided search results.
|
| 25 |
2. Synthesize an answer directly from the information found in the search results.
|
|
@@ -30,93 +27,163 @@ Instructions:
|
|
| 30 |
7. Structure your response in a clear and easy-to-read format. Start with a direct answer, followed by a more detailed explanation.
|
| 31 |
"""
|
| 32 |
|
| 33 |
-
# --- Pydantic Models
|
| 34 |
|
|
|
|
| 35 |
class ChatMessage(BaseModel):
|
| 36 |
role: str
|
| 37 |
content: str
|
| 38 |
|
| 39 |
class ChatCompletionRequest(BaseModel):
|
| 40 |
messages: List[ChatMessage] = Field(..., example=[{"role": "user", "content": "What are the benefits of learning Python?"}])
|
| 41 |
-
model: str = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
class Choice(BaseModel):
|
| 44 |
-
message: ChatMessage
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
# --- API Endpoint ---
|
| 52 |
-
|
| 53 |
-
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
| 54 |
async def chat_completions(request: ChatCompletionRequest):
|
| 55 |
"""
|
| 56 |
-
Takes a user's
|
| 57 |
-
|
| 58 |
"""
|
| 59 |
if not request.messages or request.messages[-1].role != "user":
|
| 60 |
raise HTTPException(status_code=400, detail="Invalid request. The last message must be from the 'user'.")
|
| 61 |
|
| 62 |
user_query = request.messages[-1].content
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
search_params = {"keywords": user_query}
|
| 68 |
search_response = await client.get(SEARCH_API_URL, params=search_params)
|
| 69 |
search_response.raise_for_status()
|
| 70 |
search_results = search_response.json()
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
headers = {
|
| 94 |
-
"Authorization": f"Bearer {TYPEGPT_API_KEY}",
|
| 95 |
-
"Content-Type": "application/json"
|
| 96 |
-
}
|
| 97 |
-
# The payload now includes the system prompt and the user prompt with context
|
| 98 |
-
payload = {
|
| 99 |
-
"model": "gpt-4.1-mini",
|
| 100 |
-
"messages": [
|
| 101 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
| 102 |
-
{"role": "user", "content": final_prompt}
|
| 103 |
-
]
|
| 104 |
-
}
|
| 105 |
-
llm_response = await client.post(TYPEGPT_API_URL, headers=headers, json=payload)
|
| 106 |
-
llm_response.raise_for_status()
|
| 107 |
-
llm_data = llm_response.json()
|
| 108 |
-
answer_content = llm_data['choices'][0]['message']['content']
|
| 109 |
-
except httpx.RequestError as e:
|
| 110 |
-
raise HTTPException(status_code=502, detail=f"Error calling language model API: {e}")
|
| 111 |
-
except (KeyError, IndexError) as e:
|
| 112 |
-
raise HTTPException(status_code=500, detail=f"Invalid response structure from language model API: {e}")
|
| 113 |
-
|
| 114 |
-
# 5. Format the final response
|
| 115 |
-
response_message = ChatMessage(role="assistant", content=answer_content)
|
| 116 |
-
response_choice = Choice(message=response_message)
|
| 117 |
-
|
| 118 |
-
return ChatCompletionResponse(choices=[response_choice], search_results=search_results)
|
| 119 |
|
|
|
|
| 120 |
if __name__ == "__main__":
|
| 121 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
import httpx
|
| 2 |
+
import json
|
| 3 |
+
import time
|
| 4 |
+
import uuid
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from fastapi.responses import StreamingResponse
|
| 7 |
from pydantic import BaseModel, Field
|
| 8 |
+
from typing import List, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# --- API Configuration ---
|
| 11 |
+
# It's recommended to use environment variables for sensitive data in production.
|
| 12 |
TYPEGPT_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 13 |
+
TYPEGPT_API_KEY = "sk-oPdaZC7n1JlDq0sJ5NSSyHe7sYaeAXeEuj0wX4Lk8hlOGPF8" # Replace with your actual key
|
| 14 |
SEARCH_API_URL = "https://superapis-bing.hf.space/search"
|
| 15 |
|
|
|
|
| 16 |
# --- System Prompt ---
|
| 17 |
# This prompt guides the AI to behave like a factual research assistant.
|
| 18 |
SYSTEM_PROMPT = """
|
| 19 |
You are an expert AI research assistant. Your primary goal is to provide accurate, comprehensive, and helpful answers based ONLY on the provided search results.
|
|
|
|
| 20 |
Instructions:
|
| 21 |
1. Carefully analyze the user's query and the provided search results.
|
| 22 |
2. Synthesize an answer directly from the information found in the search results.
|
|
|
|
| 27 |
7. Structure your response in a clear and easy-to-read format. Start with a direct answer, followed by a more detailed explanation.
|
| 28 |
"""
|
| 29 |
|
| 30 |
+
# --- Pydantic Models ---
|
| 31 |
|
| 32 |
+
# For incoming requests
|
| 33 |
class ChatMessage(BaseModel):
|
| 34 |
role: str
|
| 35 |
content: str
|
| 36 |
|
| 37 |
class ChatCompletionRequest(BaseModel):
|
| 38 |
messages: List[ChatMessage] = Field(..., example=[{"role": "user", "content": "What are the benefits of learning Python?"}])
|
| 39 |
+
model: str = "perplexity-like" # Model name can be customized
|
| 40 |
+
stream: bool = Field(default=False, description="Enable streaming response")
|
| 41 |
+
|
| 42 |
+
# For outgoing streaming responses (OpenAI compatible)
|
| 43 |
+
class ChatDelta(BaseModel):
|
| 44 |
+
content: Optional[str] = None
|
| 45 |
+
role: Optional[str] = None
|
| 46 |
+
|
| 47 |
+
class ChatCompletionStreamChoice(BaseModel):
|
| 48 |
+
delta: ChatDelta
|
| 49 |
+
index: int = 0
|
| 50 |
+
finish_reason: Optional[str] = None
|
| 51 |
+
|
| 52 |
+
class ChatCompletionStreamResponse(BaseModel):
|
| 53 |
+
id: str = Field(default_factory=lambda: f"chatcmpl-{uuid.uuid4().hex}")
|
| 54 |
+
object: str = "chat.completion.chunk"
|
| 55 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
| 56 |
+
model: str = "perplexity-like"
|
| 57 |
+
choices: List[ChatCompletionStreamChoice]
|
| 58 |
+
|
| 59 |
+
# --- FastAPI App Initialization ---
|
| 60 |
+
app = FastAPI(
|
| 61 |
+
title="Perplexity-like API",
|
| 62 |
+
description="An API that uses web search to answer questions with citations, supporting streaming.",
|
| 63 |
+
version="2.0.0"
|
| 64 |
+
)
|
| 65 |
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# --- Streaming Logic ---
|
| 68 |
+
async def stream_llm_response(payload: dict):
|
| 69 |
+
"""
|
| 70 |
+
An async generator that streams the response from the language model.
|
| 71 |
+
"""
|
| 72 |
+
start_time = time.time()
|
| 73 |
+
try:
|
| 74 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 75 |
+
headers = {
|
| 76 |
+
"Authorization": f"Bearer {TYPEGPT_API_KEY}",
|
| 77 |
+
"Content-Type": "application/json"
|
| 78 |
+
}
|
| 79 |
+
async with client.stream("POST", TYPEGPT_API_URL, headers=headers, json=payload) as response:
|
| 80 |
+
# Check for errors from the upstream API
|
| 81 |
+
if response.status_code != 200:
|
| 82 |
+
error_content = await response.aread()
|
| 83 |
+
raise HTTPException(
|
| 84 |
+
status_code=response.status_code,
|
| 85 |
+
detail=f"Error from language model API: {error_content.decode()}"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Process the stream line by line
|
| 89 |
+
async for line in response.aiter_lines():
|
| 90 |
+
if line.startswith("data: "):
|
| 91 |
+
data_str = line.removeprefix("data: ")
|
| 92 |
+
if data_str.strip() == "[DONE]":
|
| 93 |
+
break
|
| 94 |
+
try:
|
| 95 |
+
chunk = json.loads(data_str)
|
| 96 |
+
delta_content = chunk["choices"][0]["delta"].get("content")
|
| 97 |
+
if delta_content:
|
| 98 |
+
# Create a streaming-compliant response chunk
|
| 99 |
+
stream_choice = ChatCompletionStreamChoice(delta=ChatDelta(content=delta_content))
|
| 100 |
+
stream_response = ChatCompletionStreamResponse(choices=[stream_choice])
|
| 101 |
+
yield f"data: {stream_response.model_dump_json()}\n\n"
|
| 102 |
+
except (json.JSONDecodeError, KeyError, IndexError):
|
| 103 |
+
# Skip malformed lines
|
| 104 |
+
continue
|
| 105 |
+
|
| 106 |
+
except httpx.RequestError as e:
|
| 107 |
+
# Handle network-related errors during the streaming request
|
| 108 |
+
error_message = f"HTTP Request Error during streaming: {e}"
|
| 109 |
+
stream_choice = ChatCompletionStreamChoice(delta=ChatDelta(content=f"\n\nERROR: {error_message}"))
|
| 110 |
+
stream_response = ChatCompletionStreamResponse(choices=[stream_choice])
|
| 111 |
+
yield f"data: {stream_response.model_dump_json()}\n\n"
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
# Handle other unexpected errors
|
| 115 |
+
error_message = f"An unexpected error occurred during streaming: {e}"
|
| 116 |
+
stream_choice = ChatCompletionStreamChoice(delta=ChatDelta(content=f"\n\nERROR: {error_message}"))
|
| 117 |
+
stream_response = ChatCompletionStreamResponse(choices=[stream_choice])
|
| 118 |
+
yield f"data: {stream_response.model_dump_json()}\n\n"
|
| 119 |
+
|
| 120 |
+
# Send the final chunk with finish_reason
|
| 121 |
+
finally:
|
| 122 |
+
finish_time = time.time()
|
| 123 |
+
print(f"Stream finished in {finish_time - start_time:.2f} seconds.")
|
| 124 |
+
final_choice = ChatCompletionStreamChoice(delta=ChatDelta(), finish_reason="stop")
|
| 125 |
+
final_response = ChatCompletionStreamResponse(choices=[final_choice])
|
| 126 |
+
yield f"data: {final_response.model_dump_json()}\n\n"
|
| 127 |
+
yield "data: [DONE]\n\n"
|
| 128 |
|
| 129 |
|
| 130 |
# --- API Endpoint ---
|
| 131 |
+
@app.post("/v1/chat/completions")
|
|
|
|
| 132 |
async def chat_completions(request: ChatCompletionRequest):
|
| 133 |
"""
|
| 134 |
+
Takes a user's query, performs a web search, and streams a factual,
|
| 135 |
+
cited response from a language model.
|
| 136 |
"""
|
| 137 |
if not request.messages or request.messages[-1].role != "user":
|
| 138 |
raise HTTPException(status_code=400, detail="Invalid request. The last message must be from the 'user'.")
|
| 139 |
|
| 140 |
user_query = request.messages[-1].content
|
| 141 |
|
| 142 |
+
# 1. Perform a web search
|
| 143 |
+
try:
|
| 144 |
+
async with httpx.AsyncClient(timeout=30.0) as client:
|
| 145 |
+
search_params = {"keywords": user_query, "max_results": 7}
|
| 146 |
search_response = await client.get(SEARCH_API_URL, params=search_params)
|
| 147 |
search_response.raise_for_status()
|
| 148 |
search_results = search_response.json()
|
| 149 |
+
except httpx.RequestError as e:
|
| 150 |
+
raise HTTPException(status_code=502, detail=f"Error calling the search API: {e}")
|
| 151 |
+
except Exception as e:
|
| 152 |
+
raise HTTPException(status_code=500, detail=f"Failed to process search results: {e}")
|
| 153 |
+
|
| 154 |
+
# 2. Format search results into a context for the language model
|
| 155 |
+
# Using the 'description' field as per the new OpenAPI spec
|
| 156 |
+
context = ""
|
| 157 |
+
for i, result in enumerate(search_results):
|
| 158 |
+
context += f"Source [{i+1}]:\nTitle: {result.get('title', 'N/A')}\nDescription: {result.get('description', '')}\nURL: {result.get('url', 'N/A')}\n\n"
|
| 159 |
+
|
| 160 |
+
# 3. Construct the prompt for the language model
|
| 161 |
+
final_prompt = f"""
|
| 162 |
+
**Search Results:**
|
| 163 |
+
{context}
|
| 164 |
+
**User Query:** "{user_query}"
|
| 165 |
+
Please provide a comprehensive answer based on the search results above, following all instructions.
|
| 166 |
+
"""
|
| 167 |
|
| 168 |
+
# 4. Prepare the payload for the TypeGPT language model
|
| 169 |
+
llm_payload = {
|
| 170 |
+
"model": "gpt-4.1-mini",
|
| 171 |
+
"messages": [
|
| 172 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 173 |
+
{"role": "user", "content": final_prompt}
|
| 174 |
+
],
|
| 175 |
+
"stream": True # Enable streaming from the backing LLM
|
| 176 |
+
}
|
| 177 |
|
| 178 |
+
# 5. Return the streaming response
|
| 179 |
+
return StreamingResponse(stream_llm_response(llm_payload), media_type="text/event-stream")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
# --- Main execution ---
|
| 182 |
if __name__ == "__main__":
|
| 183 |
import uvicorn
|
| 184 |
+
# To run this app:
|
| 185 |
+
# 1. Save the code as main.py
|
| 186 |
+
# 2. Install necessary packages: pip install fastapi "uvicorn[standard]" httpx
|
| 187 |
+
# 3. Run in your terminal: uvicorn main:app --reload
|
| 188 |
+
# 4. Access the interactive docs at http://127.0.0.1:8000/docs
|
| 189 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|