Update main.py
Browse files
main.py
CHANGED
|
@@ -2,8 +2,9 @@ import os
|
|
| 2 |
import asyncio
|
| 3 |
import json
|
| 4 |
import logging
|
|
|
|
| 5 |
import re
|
| 6 |
-
from typing import AsyncGenerator, Optional
|
| 7 |
|
| 8 |
from fastapi import FastAPI
|
| 9 |
from fastapi.responses import StreamingResponse
|
|
@@ -24,16 +25,29 @@ if not LLM_API_KEY:
|
|
| 24 |
else:
|
| 25 |
logger.info("LLM API Key loaded successfully.")
|
| 26 |
|
|
|
|
| 27 |
# API Provider Constants
|
| 28 |
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
|
| 29 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 30 |
LLM_MODEL = "gpt-4.1-mini"
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Headers
|
| 34 |
-
SNAPZION_HEADERS = {
|
| 35 |
-
|
| 36 |
-
LLM_HEADERS = { "Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json" }
|
| 37 |
|
| 38 |
# --- Pydantic Models & Helper Functions ---
|
| 39 |
class DeepResearchRequest(BaseModel):
|
|
@@ -43,23 +57,19 @@ def extract_json_from_llm_response(text: str) -> Optional[list]:
|
|
| 43 |
match = re.search(r'\[.*\]', text, re.DOTALL)
|
| 44 |
if match:
|
| 45 |
json_str = match.group(0)
|
| 46 |
-
try:
|
| 47 |
-
|
| 48 |
-
except json.JSONDecodeError:
|
| 49 |
-
logger.error(f"Failed to parse extracted JSON string: {json_str}")
|
| 50 |
-
return None
|
| 51 |
-
logger.warning(f"No JSON array found in LLM response: {text}")
|
| 52 |
return None
|
| 53 |
|
| 54 |
# --- FastAPI App ---
|
| 55 |
app = FastAPI(
|
| 56 |
title="AI Deep Research API",
|
| 57 |
-
description="Provides streaming deep research completions.",
|
| 58 |
-
version="
|
| 59 |
)
|
| 60 |
|
| 61 |
-
# --- Core Service Functions
|
| 62 |
-
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) ->
|
| 63 |
try:
|
| 64 |
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
|
| 65 |
response.raise_for_status(); data = await response.json()
|
|
@@ -70,7 +80,9 @@ async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> li
|
|
| 70 |
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
| 71 |
if url.lower().endswith('.pdf'): return "Error: PDF content cannot be scraped."
|
| 72 |
try:
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
if response.status != 200: return f"Error: HTTP status {response.status}"
|
| 75 |
html = await response.text()
|
| 76 |
soup = BeautifulSoup(html, "html.parser")
|
|
@@ -79,70 +91,77 @@ async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
|
| 79 |
except Exception as e:
|
| 80 |
logger.warning(f"Scraping failed for {url}: {e}"); return f"Error: {e}"
|
| 81 |
|
| 82 |
-
async def
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
# --- Streaming Deep Research Logic ---
|
| 91 |
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
| 92 |
def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
|
| 93 |
try:
|
| 94 |
async with aiohttp.ClientSession() as session:
|
| 95 |
-
# Step 1: Generate
|
| 96 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
| 97 |
-
|
| 98 |
-
sub_question_prompt = {
|
| 99 |
-
"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array, without markdown, explanations, or any other text. Example: [\"Question 1?\", \"Question 2?\"]"}]
|
| 100 |
-
}
|
| 101 |
try:
|
| 102 |
-
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=
|
| 103 |
-
response.raise_for_status()
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
# ***** CHANGE 1: The definitive fix for the AttributeError *****
|
| 107 |
-
sub_questions = None
|
| 108 |
-
if isinstance(result, dict) and 'choices' in result:
|
| 109 |
-
# Handle standard OpenAI dictionary format
|
| 110 |
-
llm_content = result.get('choices', [{}])[0].get('message', {}).get('content', '')
|
| 111 |
-
sub_questions = extract_json_from_llm_response(llm_content)
|
| 112 |
-
elif isinstance(result, list):
|
| 113 |
-
# Handle the case where the API returns the list directly
|
| 114 |
-
sub_questions = result
|
| 115 |
-
|
| 116 |
-
if not sub_questions or not isinstance(sub_questions, list):
|
| 117 |
-
raise ValueError(f"Could not extract a valid list of questions from LLM response: {result}")
|
| 118 |
-
|
| 119 |
except Exception as e:
|
| 120 |
logger.error(f"Failed to generate research plan: {e}")
|
| 121 |
yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"}); return
|
| 122 |
|
| 123 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 124 |
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
context, sources = await task
|
| 132 |
-
if context: consolidated_context += context + "\n\n---\n\n"
|
| 133 |
-
if sources: all_sources.extend(sources)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if not consolidated_context.strip():
|
| 136 |
-
yield format_sse({"event": "error", "data": "Failed to gather any research context."}); return
|
| 137 |
|
| 138 |
-
|
|
|
|
| 139 |
if len(consolidated_context) > MAX_CONTEXT_CHAR_LENGTH:
|
|
|
|
| 140 |
consolidated_context = consolidated_context[:MAX_CONTEXT_CHAR_LENGTH]
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
-
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=
|
| 146 |
response.raise_for_status()
|
| 147 |
async for line in response.content:
|
| 148 |
if line.strip():
|
|
@@ -155,10 +174,9 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 155 |
if content: yield format_sse({"event": "chunk", "data": content})
|
| 156 |
except json.JSONDecodeError: continue
|
| 157 |
|
| 158 |
-
|
| 159 |
-
yield format_sse({"event": "sources", "data": unique_sources})
|
| 160 |
except Exception as e:
|
| 161 |
-
logger.error(f"A critical error occurred in the main research stream: {e}")
|
| 162 |
yield format_sse({"event": "error", "data": str(e)})
|
| 163 |
finally:
|
| 164 |
yield format_sse({"event": "done", "data": "Deep research complete."})
|
|
|
|
| 2 |
import asyncio
|
| 3 |
import json
|
| 4 |
import logging
|
| 5 |
+
import random
|
| 6 |
import re
|
| 7 |
+
from typing import AsyncGenerator, Optional, Tuple, List
|
| 8 |
|
| 9 |
from fastapi import FastAPI
|
| 10 |
from fastapi.responses import StreamingResponse
|
|
|
|
| 25 |
else:
|
| 26 |
logger.info("LLM API Key loaded successfully.")
|
| 27 |
|
| 28 |
+
# --- Constants & Headers ---
|
| 29 |
# API Provider Constants
|
| 30 |
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
|
| 31 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 32 |
LLM_MODEL = "gpt-4.1-mini"
|
| 33 |
+
|
| 34 |
+
# Automatic Context Sizing based on Tokens
|
| 35 |
+
TARGET_TOKEN_LIMIT = 28000 # Safe limit for models with ~32k context windows
|
| 36 |
+
ESTIMATED_CHARS_PER_TOKEN = 4
|
| 37 |
+
MAX_CONTEXT_CHAR_LENGTH = TARGET_TOKEN_LIMIT * ESTIMATED_CHARS_PER_TOKEN
|
| 38 |
+
|
| 39 |
+
# Real Browser User Agents for Rotation
|
| 40 |
+
USER_AGENTS = [
|
| 41 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
|
| 42 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
|
| 43 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0",
|
| 44 |
+
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
|
| 45 |
+
"Mozilla/5.0 (iPhone; CPU iPhone OS 17_5_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/17.5 Mobile/15E148 Safari/604.1"
|
| 46 |
+
]
|
| 47 |
|
| 48 |
# Headers
|
| 49 |
+
SNAPZION_HEADERS = {'Content-Type': 'application/json'}
|
| 50 |
+
LLM_HEADERS = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json"}
|
|
|
|
| 51 |
|
| 52 |
# --- Pydantic Models & Helper Functions ---
|
| 53 |
class DeepResearchRequest(BaseModel):
|
|
|
|
| 57 |
match = re.search(r'\[.*\]', text, re.DOTALL)
|
| 58 |
if match:
|
| 59 |
json_str = match.group(0)
|
| 60 |
+
try: return json.loads(json_str)
|
| 61 |
+
except json.JSONDecodeError: return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return None
|
| 63 |
|
| 64 |
# --- FastAPI App ---
|
| 65 |
app = FastAPI(
|
| 66 |
title="AI Deep Research API",
|
| 67 |
+
description="Provides robust, streaming deep research completions.",
|
| 68 |
+
version="3.0.0" # Major version bump for robustness overhaul
|
| 69 |
)
|
| 70 |
|
| 71 |
+
# --- Core Service Functions ---
|
| 72 |
+
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> List[dict]:
|
| 73 |
try:
|
| 74 |
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
|
| 75 |
response.raise_for_status(); data = await response.json()
|
|
|
|
| 80 |
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
| 81 |
if url.lower().endswith('.pdf'): return "Error: PDF content cannot be scraped."
|
| 82 |
try:
|
| 83 |
+
# Rotate user agents for each request
|
| 84 |
+
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
| 85 |
+
async with session.get(url, headers=headers, timeout=10, ssl=False) as response:
|
| 86 |
if response.status != 200: return f"Error: HTTP status {response.status}"
|
| 87 |
html = await response.text()
|
| 88 |
soup = BeautifulSoup(html, "html.parser")
|
|
|
|
| 91 |
except Exception as e:
|
| 92 |
logger.warning(f"Scraping failed for {url}: {e}"); return f"Error: {e}"
|
| 93 |
|
| 94 |
+
async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
|
| 95 |
+
"""Scrapes a single source and falls back to its snippet if scraping fails."""
|
| 96 |
+
scraped_content = await scrape_url(session, source['link'])
|
| 97 |
+
if scraped_content.startswith("Error:"):
|
| 98 |
+
# SNIPPET FALLBACK LOGIC
|
| 99 |
+
logger.warning(f"Scraping failed for {source['link']}. Falling back to snippet.")
|
| 100 |
+
return source['snippet'], source
|
| 101 |
+
return scraped_content, source
|
| 102 |
|
| 103 |
# --- Streaming Deep Research Logic ---
|
| 104 |
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
| 105 |
def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
|
| 106 |
try:
|
| 107 |
async with aiohttp.ClientSession() as session:
|
| 108 |
+
# Step 1: Generate Research Plan
|
| 109 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
| 110 |
+
plan_prompt = {"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array, without markdown. Example: [\"Question 1?\"]"}]}
|
|
|
|
|
|
|
|
|
|
| 111 |
try:
|
| 112 |
+
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=20) as response:
|
| 113 |
+
response.raise_for_status(); result = await response.json()
|
| 114 |
+
sub_questions = result if isinstance(result, list) else extract_json_from_llm_response(result['choices'][0]['message']['content'])
|
| 115 |
+
if not isinstance(sub_questions, list): raise ValueError(f"Could not extract a valid list from LLM response: {result}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
except Exception as e:
|
| 117 |
logger.error(f"Failed to generate research plan: {e}")
|
| 118 |
yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"}); return
|
| 119 |
|
| 120 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 121 |
|
| 122 |
+
# Step 2: Conduct Research in Parallel
|
| 123 |
+
yield format_sse({"event": "status", "data": f"Searching for sources for {len(sub_questions)} topics..."})
|
| 124 |
+
search_tasks = [call_snapzion_search(session, sq) for sq in sub_questions]
|
| 125 |
+
all_search_results = await asyncio.gather(*search_tasks)
|
| 126 |
+
|
| 127 |
+
# Deduplicate sources by link to avoid scraping the same page multiple times
|
| 128 |
+
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
|
| 129 |
|
| 130 |
+
if not unique_sources:
|
| 131 |
+
yield format_sse({"event": "error", "data": "Search did not return any usable sources."}); return
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Scraping and processing..."})
|
| 134 |
+
|
| 135 |
+
# Process all unique sources concurrently with snippet fallback
|
| 136 |
+
processing_tasks = [research_and_process_source(session, source) for source in unique_sources]
|
| 137 |
+
|
| 138 |
+
consolidated_context = ""
|
| 139 |
+
all_sources_used = []
|
| 140 |
+
successful_scrapes = 0
|
| 141 |
+
|
| 142 |
+
for task in asyncio.as_completed(processing_tasks):
|
| 143 |
+
content, source_info = await task
|
| 144 |
+
if content:
|
| 145 |
+
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
|
| 146 |
+
all_sources_used.append(source_info)
|
| 147 |
+
if not content == source_info['snippet']: # Count as success only if not a snippet
|
| 148 |
+
successful_scrapes += 1
|
| 149 |
+
|
| 150 |
+
logger.info(f"Context gathering complete. Successfully scraped {successful_scrapes}/{len(unique_sources)} pages. Used {len(all_sources_used)} total sources (including snippets).")
|
| 151 |
+
|
| 152 |
if not consolidated_context.strip():
|
| 153 |
+
yield format_sse({"event": "error", "data": "Failed to gather any research context from scraping or snippets."}); return
|
| 154 |
|
| 155 |
+
# Step 3: Synthesize Final Report
|
| 156 |
+
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
|
| 157 |
if len(consolidated_context) > MAX_CONTEXT_CHAR_LENGTH:
|
| 158 |
+
logger.warning(f"Context truncated from {len(consolidated_context)} to {MAX_CONTEXT_CHAR_LENGTH} chars.")
|
| 159 |
consolidated_context = consolidated_context[:MAX_CONTEXT_CHAR_LENGTH]
|
| 160 |
|
| 161 |
+
report_prompt = f'Synthesize the provided context into a comprehensive, well-structured report on "{query}". Use markdown. Context:\n{consolidated_context}'
|
| 162 |
+
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
|
| 163 |
|
| 164 |
+
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
|
| 165 |
response.raise_for_status()
|
| 166 |
async for line in response.content:
|
| 167 |
if line.strip():
|
|
|
|
| 174 |
if content: yield format_sse({"event": "chunk", "data": content})
|
| 175 |
except json.JSONDecodeError: continue
|
| 176 |
|
| 177 |
+
yield format_sse({"event": "sources", "data": all_sources_used})
|
|
|
|
| 178 |
except Exception as e:
|
| 179 |
+
logger.error(f"A critical error occurred in the main research stream: {e}", exc_info=True)
|
| 180 |
yield format_sse({"event": "error", "data": str(e)})
|
| 181 |
finally:
|
| 182 |
yield format_sse({"event": "done", "data": "Deep research complete."})
|