Update main.py
Browse files
main.py
CHANGED
|
@@ -4,8 +4,13 @@ from fastapi import FastAPI, HTTPException, Query
|
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import aiohttp
|
| 6 |
from bs4 import BeautifulSoup
|
|
|
|
| 7 |
|
| 8 |
# --- Configuration ---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
load_dotenv()
|
| 10 |
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
| 11 |
|
|
@@ -30,6 +35,15 @@ SNAPZION_HEADERS = {
|
|
| 30 |
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36',
|
| 31 |
}
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# LLM Configuration
|
| 34 |
LLM_API_URL = "https://api.inference.net/v1/chat/completions"
|
| 35 |
LLM_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"
|
|
@@ -38,44 +52,46 @@ LLM_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"
|
|
| 38 |
app = FastAPI(
|
| 39 |
title="AI Search Snippets API (Snapzion)",
|
| 40 |
description="Provides AI-generated summaries from Snapzion search results.",
|
| 41 |
-
version="1.0
|
| 42 |
)
|
| 43 |
|
| 44 |
# --- Core Asynchronous Functions ---
|
| 45 |
|
| 46 |
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> list:
|
| 47 |
-
"""Calls the Snapzion search API and returns a list of organic results."""
|
| 48 |
try:
|
| 49 |
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
|
| 50 |
response.raise_for_status()
|
| 51 |
data = await response.json()
|
| 52 |
return data.get("organic_results", [])
|
| 53 |
except Exception as e:
|
|
|
|
| 54 |
raise HTTPException(status_code=503, detail=f"Search service (Snapzion) failed: {e}")
|
| 55 |
|
|
|
|
| 56 |
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
| 57 |
-
"""Asynchronously scrapes
|
| 58 |
if url.lower().endswith('.pdf'):
|
| 59 |
-
return "Content is a PDF, which cannot be scraped."
|
| 60 |
try:
|
| 61 |
-
|
|
|
|
| 62 |
if response.status != 200:
|
| 63 |
-
|
|
|
|
| 64 |
html = await response.text()
|
| 65 |
soup = BeautifulSoup(html, "html.parser")
|
| 66 |
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
|
| 67 |
tag.decompose()
|
| 68 |
return " ".join(soup.stripped_strings)
|
| 69 |
except Exception as e:
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
async def get_ai_snippet(query: str, context: str, sources: list) -> str:
|
| 73 |
-
"""Generates a synthesized answer using an LLM based on the provided context."""
|
| 74 |
headers = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json"}
|
| 75 |
source_list_str = "\n".join([f"[{i+1}] {source['title']}: {source['link']}" for i, source in enumerate(sources)])
|
| 76 |
-
|
| 77 |
prompt = f"""
|
| 78 |
-
Based *only* on the provided context
|
| 79 |
|
| 80 |
Sources:
|
| 81 |
{source_list_str}
|
|
@@ -90,7 +106,6 @@ User Query: "{query}"
|
|
| 90 |
Answer with citations:
|
| 91 |
"""
|
| 92 |
data = {"model": LLM_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 500}
|
| 93 |
-
|
| 94 |
async with aiohttp.ClientSession() as session:
|
| 95 |
try:
|
| 96 |
async with session.post(LLM_API_URL, headers=headers, json=data, timeout=45) as response:
|
|
@@ -98,39 +113,45 @@ Answer with citations:
|
|
| 98 |
result = await response.json()
|
| 99 |
return result['choices'][0]['message']['content']
|
| 100 |
except Exception as e:
|
|
|
|
| 101 |
raise HTTPException(status_code=502, detail=f"Failed to get response from LLM: {e}")
|
| 102 |
|
| 103 |
# --- API Endpoint ---
|
| 104 |
|
| 105 |
@app.get("/search")
|
| 106 |
async def ai_search(q: str = Query(..., min_length=3, description="The search query.")):
|
| 107 |
-
"""
|
| 108 |
-
Performs an AI-powered search using Snapzion. It finds relevant web pages,
|
| 109 |
-
scrapes their content, and generates a synthesized answer with citations.
|
| 110 |
-
"""
|
| 111 |
async with aiohttp.ClientSession() as session:
|
| 112 |
-
# 1. Search for relevant web pages using Snapzion
|
| 113 |
search_results = await call_snapzion_search(session, q)
|
| 114 |
if not search_results:
|
| 115 |
raise HTTPException(status_code=404, detail="Could not find any relevant sources for the query.")
|
| 116 |
|
| 117 |
-
|
| 118 |
-
sources = search_results[:4]
|
| 119 |
-
|
| 120 |
-
# 2. Scrape all pages concurrently for speed
|
| 121 |
scrape_tasks = [scrape_url(session, source["link"]) for source in sources]
|
| 122 |
scraped_contents = await asyncio.gather(*scrape_tasks)
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
if not full_context.strip():
|
| 131 |
-
|
|
|
|
| 132 |
|
| 133 |
-
# 4. Generate the final AI snippet
|
| 134 |
ai_summary = await get_ai_snippet(q, full_context, sources)
|
| 135 |
|
| 136 |
return {"ai_summary": ai_summary, "sources": sources}
|
|
|
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import aiohttp
|
| 6 |
from bs4 import BeautifulSoup
|
| 7 |
+
import logging
|
| 8 |
|
| 9 |
# --- Configuration ---
|
| 10 |
+
# Configure logging to see what's happening
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
load_dotenv()
|
| 15 |
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
| 16 |
|
|
|
|
| 35 |
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36',
|
| 36 |
}
|
| 37 |
|
| 38 |
+
# ***** CHANGE 1: Add general-purpose browser headers for scraping *****
|
| 39 |
+
SCRAPING_HEADERS = {
|
| 40 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36',
|
| 41 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8',
|
| 42 |
+
'Accept-Language': 'en-US,en;q=0.9',
|
| 43 |
+
'Connection': 'keep-alive',
|
| 44 |
+
'Upgrade-Insecure-Requests': '1',
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
# LLM Configuration
|
| 48 |
LLM_API_URL = "https://api.inference.net/v1/chat/completions"
|
| 49 |
LLM_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"
|
|
|
|
| 52 |
app = FastAPI(
|
| 53 |
title="AI Search Snippets API (Snapzion)",
|
| 54 |
description="Provides AI-generated summaries from Snapzion search results.",
|
| 55 |
+
version="1.1.0" # Version bump for new resilience feature
|
| 56 |
)
|
| 57 |
|
| 58 |
# --- Core Asynchronous Functions ---
|
| 59 |
|
| 60 |
async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> list:
|
|
|
|
| 61 |
try:
|
| 62 |
async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
|
| 63 |
response.raise_for_status()
|
| 64 |
data = await response.json()
|
| 65 |
return data.get("organic_results", [])
|
| 66 |
except Exception as e:
|
| 67 |
+
logger.error(f"Snapzion API call failed: {e}")
|
| 68 |
raise HTTPException(status_code=503, detail=f"Search service (Snapzion) failed: {e}")
|
| 69 |
|
| 70 |
+
# ***** CHANGE 2: Improve the scraping function *****
|
| 71 |
async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
|
| 72 |
+
"""Asynchronously scrapes text from a URL, now with browser headers."""
|
| 73 |
if url.lower().endswith('.pdf'):
|
| 74 |
+
return "Error: Content is a PDF, which cannot be scraped."
|
| 75 |
try:
|
| 76 |
+
# Use the new scraping headers to look like a real browser
|
| 77 |
+
async with session.get(url, headers=SCRAPING_HEADERS, timeout=10, ssl=False) as response:
|
| 78 |
if response.status != 200:
|
| 79 |
+
logger.warning(f"Failed to fetch {url}, status code: {response.status}")
|
| 80 |
+
return f"Error: Failed to fetch with status {response.status}"
|
| 81 |
html = await response.text()
|
| 82 |
soup = BeautifulSoup(html, "html.parser")
|
| 83 |
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
|
| 84 |
tag.decompose()
|
| 85 |
return " ".join(soup.stripped_strings)
|
| 86 |
except Exception as e:
|
| 87 |
+
logger.warning(f"Could not scrape {url}. Reason: {e}")
|
| 88 |
+
return f"Error: Could not scrape. Reason: {e}"
|
| 89 |
|
| 90 |
async def get_ai_snippet(query: str, context: str, sources: list) -> str:
|
|
|
|
| 91 |
headers = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json"}
|
| 92 |
source_list_str = "\n".join([f"[{i+1}] {source['title']}: {source['link']}" for i, source in enumerate(sources)])
|
|
|
|
| 93 |
prompt = f"""
|
| 94 |
+
Based *only* on the provided context, provide a concise, factual answer to the user's query. Cite every sentence with the corresponding source number(s), like `[1]` or `[2, 3]`.
|
| 95 |
|
| 96 |
Sources:
|
| 97 |
{source_list_str}
|
|
|
|
| 106 |
Answer with citations:
|
| 107 |
"""
|
| 108 |
data = {"model": LLM_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 500}
|
|
|
|
| 109 |
async with aiohttp.ClientSession() as session:
|
| 110 |
try:
|
| 111 |
async with session.post(LLM_API_URL, headers=headers, json=data, timeout=45) as response:
|
|
|
|
| 113 |
result = await response.json()
|
| 114 |
return result['choices'][0]['message']['content']
|
| 115 |
except Exception as e:
|
| 116 |
+
logger.error(f"LLM API call failed: {e}")
|
| 117 |
raise HTTPException(status_code=502, detail=f"Failed to get response from LLM: {e}")
|
| 118 |
|
| 119 |
# --- API Endpoint ---
|
| 120 |
|
| 121 |
@app.get("/search")
|
| 122 |
async def ai_search(q: str = Query(..., min_length=3, description="The search query.")):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
async with aiohttp.ClientSession() as session:
|
|
|
|
| 124 |
search_results = await call_snapzion_search(session, q)
|
| 125 |
if not search_results:
|
| 126 |
raise HTTPException(status_code=404, detail="Could not find any relevant sources for the query.")
|
| 127 |
|
| 128 |
+
sources = search_results[:5] # Use top 5 sources
|
|
|
|
|
|
|
|
|
|
| 129 |
scrape_tasks = [scrape_url(session, source["link"]) for source in sources]
|
| 130 |
scraped_contents = await asyncio.gather(*scrape_tasks)
|
| 131 |
|
| 132 |
+
# ***** CHANGE 3: Implement the robust fallback logic *****
|
| 133 |
+
successful_scrapes = [content for content in scraped_contents if not content.startswith("Error:")]
|
| 134 |
+
|
| 135 |
+
full_context = ""
|
| 136 |
+
if successful_scrapes:
|
| 137 |
+
logger.info(f"Successfully scraped {len(successful_scrapes)} out of {len(sources)} sources.")
|
| 138 |
+
# Build context from successfully scraped content
|
| 139 |
+
full_context = "\n\n".join(
|
| 140 |
+
f"Source [{i+1}] ({sources[i]['link']}):\n{scraped_contents[i]}"
|
| 141 |
+
for i in range(len(sources)) if not scraped_contents[i].startswith("Error:")
|
| 142 |
+
)
|
| 143 |
+
else:
|
| 144 |
+
# If ALL scrapes failed, fall back to using the snippets from the search API
|
| 145 |
+
logger.warning("All scraping attempts failed. Falling back to using API snippets for context.")
|
| 146 |
+
full_context = "\n\n".join(
|
| 147 |
+
f"Source [{i+1}] ({source['link']}):\n{source['snippet']}"
|
| 148 |
+
for i, source in enumerate(sources)
|
| 149 |
+
)
|
| 150 |
|
| 151 |
if not full_context.strip():
|
| 152 |
+
# This is a final safety net, should rarely be hit now
|
| 153 |
+
raise HTTPException(status_code=500, detail="Could not construct any context from sources or snippets.")
|
| 154 |
|
|
|
|
| 155 |
ai_summary = await get_ai_snippet(q, full_context, sources)
|
| 156 |
|
| 157 |
return {"ai_summary": ai_summary, "sources": sources}
|