Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -142,211 +142,95 @@ def load_query(request: gr.Request):
|
|
| 142 |
query = request.query_params.get("query") or ""
|
| 143 |
return query
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
with demo:
|
| 148 |
-
gr.HTML(TITLE)
|
| 149 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 150 |
-
|
| 151 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 152 |
-
with gr.TabItem("Hallucinations Benchmark",
|
| 153 |
-
elem_id="llm-benchmark-tab-table",
|
| 154 |
-
id=0):
|
| 155 |
-
with gr.Row():
|
| 156 |
-
with gr.Column():
|
| 157 |
-
with gr.Row():
|
| 158 |
-
search_bar = gr.Textbox(placeholder=" 🔍 Model search (separate multiple queries with `;`)",
|
| 159 |
-
show_label=False,
|
| 160 |
-
elem_id="search-bar")
|
| 161 |
-
with gr.Row():
|
| 162 |
-
shown_columns = gr.CheckboxGroup(
|
| 163 |
-
choices=[
|
| 164 |
-
c.name
|
| 165 |
-
for c in fields(AutoEvalColumn)
|
| 166 |
-
if not c.hidden and not c.never_hidden and not c.dummy
|
| 167 |
-
],
|
| 168 |
-
value=[
|
| 169 |
-
c.name
|
| 170 |
-
for c in fields(AutoEvalColumn)
|
| 171 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 172 |
-
],
|
| 173 |
-
label="Select columns to show",
|
| 174 |
-
elem_id="column-select",
|
| 175 |
-
interactive=True)
|
| 176 |
-
|
| 177 |
-
with gr.Column(min_width=320):
|
| 178 |
-
filter_columns_type = gr.CheckboxGroup(
|
| 179 |
-
label="Model types",
|
| 180 |
-
choices=[t.to_str() for t in ModelType],
|
| 181 |
-
value=[t.to_str() for t in ModelType],
|
| 182 |
-
interactive=True,
|
| 183 |
-
elem_id="filter-columns-type")
|
| 184 |
-
|
| 185 |
-
filter_columns_precision = gr.CheckboxGroup(
|
| 186 |
-
label="Precision",
|
| 187 |
-
choices=[i.value.name for i in Precision],
|
| 188 |
-
value=[i.value.name for i in Precision],
|
| 189 |
-
interactive=True,
|
| 190 |
-
elem_id="filter-columns-precision")
|
| 191 |
-
|
| 192 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 193 |
-
label="Model sizes (in billions of parameters)",
|
| 194 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 195 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 196 |
-
interactive=True,
|
| 197 |
-
elem_id="filter-columns-size")
|
| 198 |
-
|
| 199 |
-
leaderboard_table = gr.components.Dataframe(
|
| 200 |
-
value=leaderboard_df[
|
| 201 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + [AutoEvalColumn.dummy.name]
|
| 202 |
-
] if leaderboard_df.empty is False else leaderboard_df,
|
| 203 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 204 |
-
datatype=TYPES,
|
| 205 |
-
elem_id="leaderboard-table",
|
| 206 |
-
interactive=False,
|
| 207 |
-
visible=True)
|
| 208 |
-
|
| 209 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 210 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 211 |
-
value=original_df[COLS] if original_df.empty is False else original_df,
|
| 212 |
-
headers=COLS,
|
| 213 |
-
datatype=TYPES,
|
| 214 |
-
visible=False)
|
| 215 |
-
|
| 216 |
-
search_bar.submit(
|
| 217 |
-
update_table,
|
| 218 |
-
[
|
| 219 |
-
hidden_leaderboard_table_for_search,
|
| 220 |
-
shown_columns,
|
| 221 |
-
filter_columns_type,
|
| 222 |
-
filter_columns_precision,
|
| 223 |
-
filter_columns_size,
|
| 224 |
-
search_bar,
|
| 225 |
-
],
|
| 226 |
-
leaderboard_table)
|
| 227 |
-
|
| 228 |
-
# Check query parameter once at startup and update search bar
|
| 229 |
-
demo.load(load_query, inputs=[], outputs=[search_bar])
|
| 230 |
-
|
| 231 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]:
|
| 232 |
-
selector.change(
|
| 233 |
-
update_table,
|
| 234 |
-
[
|
| 235 |
-
hidden_leaderboard_table_for_search,
|
| 236 |
-
shown_columns,
|
| 237 |
-
filter_columns_type,
|
| 238 |
-
filter_columns_precision,
|
| 239 |
-
filter_columns_size,
|
| 240 |
-
search_bar,
|
| 241 |
-
],
|
| 242 |
-
leaderboard_table,
|
| 243 |
-
queue=True)
|
| 244 |
-
|
| 245 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 246 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 247 |
-
print(f'dataset df columns: {list(dataset_df.columns)}')
|
| 248 |
-
dataset_table = gr.components.Dataframe(
|
| 249 |
-
value=dataset_df,
|
| 250 |
-
headers=list(dataset_df.columns),
|
| 251 |
-
datatype=['str', 'markdown', 'str', 'str', 'str'],
|
| 252 |
-
elem_id="dataset-table",
|
| 253 |
-
interactive=False,
|
| 254 |
-
visible=True,
|
| 255 |
-
column_widths=["15%", "20%"]
|
| 256 |
-
)
|
| 257 |
-
gr.Markdown(LLM_BENCHMARKS_DETAILS, elem_classes="markdown-text")
|
| 258 |
-
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
|
| 259 |
-
|
| 260 |
-
with gr.TabItem("Submit a model ", elem_id="llm-benchmark-tab-table", id=3):
|
| 261 |
-
with gr.Column():
|
| 262 |
-
with gr.Row():
|
| 263 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 264 |
-
|
| 265 |
-
with gr.Column():
|
| 266 |
-
with gr.Accordion(f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
|
| 267 |
-
with gr.Row():
|
| 268 |
-
finished_eval_table = gr.components.Dataframe(
|
| 269 |
-
value=finished_eval_queue_df,
|
| 270 |
-
headers=EVAL_COLS,
|
| 271 |
-
datatype=EVAL_TYPES,
|
| 272 |
-
row_count=5)
|
| 273 |
-
|
| 274 |
-
with gr.Accordion(f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
|
| 275 |
-
with gr.Row():
|
| 276 |
-
running_eval_table = gr.components.Dataframe(
|
| 277 |
-
value=running_eval_queue_df,
|
| 278 |
-
headers=EVAL_COLS,
|
| 279 |
-
datatype=EVAL_TYPES,
|
| 280 |
-
row_count=5)
|
| 281 |
-
|
| 282 |
-
with gr.Accordion(f"⏳ Scheduled Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
|
| 283 |
-
with gr.Row():
|
| 284 |
-
pending_eval_table = gr.components.Dataframe(
|
| 285 |
-
value=pending_eval_queue_df,
|
| 286 |
-
headers=EVAL_COLS,
|
| 287 |
-
datatype=EVAL_TYPES,
|
| 288 |
-
row_count=5)
|
| 289 |
-
|
| 290 |
-
with gr.Row():
|
| 291 |
-
gr.Markdown("# Submit your model here", elem_classes="markdown-text")
|
| 292 |
-
|
| 293 |
-
with gr.Row():
|
| 294 |
-
with gr.Column():
|
| 295 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 296 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 297 |
-
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
| 298 |
-
model_type = gr.Dropdown(
|
| 299 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 300 |
-
label="Model type",
|
| 301 |
-
multiselect=False,
|
| 302 |
-
value=None,
|
| 303 |
-
interactive=True)
|
| 304 |
-
|
| 305 |
-
with gr.Column():
|
| 306 |
-
precision = gr.Dropdown(
|
| 307 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 308 |
-
label="Precision",
|
| 309 |
-
multiselect=False,
|
| 310 |
-
value="float32",
|
| 311 |
-
interactive=True)
|
| 312 |
-
|
| 313 |
-
weight_type = gr.Dropdown(
|
| 314 |
-
choices=[i.value.name for i in WeightType],
|
| 315 |
-
label="Weights type",
|
| 316 |
-
multiselect=False,
|
| 317 |
-
value="Original",
|
| 318 |
-
interactive=True)
|
| 319 |
-
|
| 320 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 321 |
-
|
| 322 |
-
submit_button = gr.Button("Submit Eval")
|
| 323 |
-
submission_result = gr.Markdown()
|
| 324 |
-
submit_button.click(
|
| 325 |
-
add_new_eval,
|
| 326 |
-
[
|
| 327 |
-
model_name_textbox,
|
| 328 |
-
base_model_name_textbox,
|
| 329 |
-
revision_name_textbox,
|
| 330 |
-
precision,
|
| 331 |
-
private,
|
| 332 |
-
weight_type,
|
| 333 |
-
model_type,
|
| 334 |
-
],
|
| 335 |
-
submission_result)
|
| 336 |
-
|
| 337 |
-
with gr.Row():
|
| 338 |
-
with gr.Accordion("Citing this leaderboard", open=False):
|
| 339 |
-
citation_button = gr.Textbox(
|
| 340 |
-
value=CITATION_BUTTON_TEXT,
|
| 341 |
-
label=CITATION_BUTTON_LABEL,
|
| 342 |
-
lines=20,
|
| 343 |
-
elem_id="citation-button",
|
| 344 |
-
show_copy_button=True)
|
| 345 |
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
|
|
|
|
|
|
| 350 |
|
| 351 |
def launch_backend():
|
| 352 |
import subprocess
|
|
@@ -354,8 +238,6 @@ def launch_backend():
|
|
| 354 |
if DEVICE not in {'cpu'}:
|
| 355 |
_ = subprocess.run(["python", "backend-cli.py"])
|
| 356 |
|
| 357 |
-
|
| 358 |
-
# scheduler.add_job(launch_backend, "interval", seconds=120)
|
| 359 |
-
|
| 360 |
scheduler.start()
|
| 361 |
-
|
|
|
|
|
|
| 142 |
query = request.query_params.get("query") or ""
|
| 143 |
return query
|
| 144 |
|
| 145 |
+
leaderboard_df = filter_models(
|
| 146 |
+
df=leaderboard_df,
|
| 147 |
+
type_query=[t.to_str(" : ") for t in ModelType],
|
| 148 |
+
size_query=list(NUMERIC_INTERVALS.keys()),
|
| 149 |
+
precision_query=[i.value.name for i in Precision],
|
| 150 |
+
show_deleted=False,
|
| 151 |
+
)
|
| 152 |
|
| 153 |
+
import unicodedata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
def is_valid_unicode(char):
|
| 156 |
+
try:
|
| 157 |
+
unicodedata.name(char)
|
| 158 |
+
return True # Valid Unicode character
|
| 159 |
+
except ValueError:
|
| 160 |
+
return False # Invalid Unicode character
|
| 161 |
+
|
| 162 |
+
def remove_invalid_unicode(input_string):
|
| 163 |
+
if isinstance(input_string, str):
|
| 164 |
+
valid_chars = [char for char in input_string if is_valid_unicode(char)]
|
| 165 |
+
return ''.join(valid_chars)
|
| 166 |
+
else:
|
| 167 |
+
return input_string # Return non-string values as is
|
| 168 |
+
|
| 169 |
+
dummy1 = gr.Textbox(visible=False)
|
| 170 |
+
|
| 171 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 172 |
+
headers=COLS,
|
| 173 |
+
datatype=TYPES,
|
| 174 |
+
visible=False,
|
| 175 |
+
line_breaks=False,
|
| 176 |
+
interactive=False
|
| 177 |
+
)
|
| 178 |
|
| 179 |
+
def display(x, y):
|
| 180 |
+
# Assuming df is your DataFrame
|
| 181 |
+
for column in leaderboard_df.columns:
|
| 182 |
+
if leaderboard_df[column].dtype == 'object':
|
| 183 |
+
leaderboard_df[column] = leaderboard_df[column].apply(remove_invalid_unicode)
|
| 184 |
+
|
| 185 |
+
subset_df = leaderboard_df[COLS]
|
| 186 |
+
return subset_df
|
| 187 |
+
|
| 188 |
+
INTRODUCTION_TEXT = """
|
| 189 |
+
This is a copied space from LLM Trustworthy Leaderboard. Instead of displaying
|
| 190 |
+
the results as table this space was modified to simply provides a gradio API interface.
|
| 191 |
+
Using the following python script below, users can access the full leaderboard data easily.
|
| 192 |
+
Python on how to access the data:
|
| 193 |
+
```python
|
| 194 |
+
# Import dependencies
|
| 195 |
+
from gradio_client import Client
|
| 196 |
+
# Initialize the Gradio client with the API URL
|
| 197 |
+
client = Client("https://rodrigomasini-data-only-llm-trustworthy-leaderboard.hf.space/")
|
| 198 |
+
try:
|
| 199 |
+
# Perform the API call
|
| 200 |
+
response = client.predict("","", api_name='/predict')
|
| 201 |
+
# Check if response it's directly accessible
|
| 202 |
+
if len(response) > 0:
|
| 203 |
+
print("Response received!")
|
| 204 |
+
headers = response.get('headers', [])
|
| 205 |
+
data = response.get('data', [])
|
| 206 |
+
print(headers)
|
| 207 |
+
# Remove commenst if you want to download the dataset and save in csv format
|
| 208 |
+
# Specify the path to your CSV file
|
| 209 |
+
#csv_file_path = 'llm-trustworthy-benchmark.csv'
|
| 210 |
+
# Open the CSV file for writing
|
| 211 |
+
#with open(csv_file_path, mode='w', newline='', encoding='utf-8') as file:
|
| 212 |
+
# writer = csv.writer(file)
|
| 213 |
+
# Write the headers
|
| 214 |
+
# writer.writerow(headers)
|
| 215 |
+
# Write the data
|
| 216 |
+
# for row in data:
|
| 217 |
+
# writer.writerow(row)
|
| 218 |
+
#print(f"Results saved to {csv_file_path}")
|
| 219 |
+
# If the above line prints a string that looks like JSON, you can parse it with json.loads(response)
|
| 220 |
+
# Otherwise, you might need to adjust based on the actual structure of `response`
|
| 221 |
+
except Exception as e:
|
| 222 |
+
print(f"An error occurred: {e}")
|
| 223 |
+
```
|
| 224 |
+
"""
|
| 225 |
+
|
| 226 |
+
interface = gr.Interface(
|
| 227 |
+
fn=display,
|
| 228 |
+
inputs=[gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), dummy1],
|
| 229 |
+
outputs=[hidden_leaderboard_table_for_search]
|
| 230 |
+
)
|
| 231 |
|
| 232 |
+
scheduler = BackgroundScheduler()
|
| 233 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 234 |
|
| 235 |
def launch_backend():
|
| 236 |
import subprocess
|
|
|
|
| 238 |
if DEVICE not in {'cpu'}:
|
| 239 |
_ = subprocess.run(["python", "backend-cli.py"])
|
| 240 |
|
|
|
|
|
|
|
|
|
|
| 241 |
scheduler.start()
|
| 242 |
+
|
| 243 |
+
interface.launch()
|