Spaces:
Runtime error
Runtime error
Commit
·
b79c971
1
Parent(s):
950ba14
update
Browse files
halueval-cli.py
CHANGED
|
@@ -28,20 +28,22 @@ def main():
|
|
| 28 |
eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
| 29 |
eval_request = [r for r in eval_requests if 'bloom-560m' in r.model][0]
|
| 30 |
|
| 31 |
-
task_names = ['halueval_qa']
|
|
|
|
|
|
|
| 32 |
|
| 33 |
include_task_folder("src/backend/tasks/")
|
| 34 |
initialize_tasks('INFO')
|
| 35 |
|
| 36 |
print(tasks.ALL_TASKS)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
print(f"Selected Tasks: [{task_name}]")
|
| 42 |
-
results = evaluator.simple_evaluate(model="hf-auto", model_args=eval_request.get_model_args(), tasks=[task_name], num_fewshot=0,
|
| 43 |
batch_size=1, device=DEVICE, use_cache=None, limit=8, write_out=True)
|
| 44 |
-
print('AAA', results)
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
if __name__ == "__main__":
|
|
|
|
| 28 |
eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
| 29 |
eval_request = [r for r in eval_requests if 'bloom-560m' in r.model][0]
|
| 30 |
|
| 31 |
+
# task_names = ['halueval_qa']
|
| 32 |
+
# task_names = ['triviaqa']
|
| 33 |
+
TASKS_HARNESS = [task.value for task in Tasks]
|
| 34 |
|
| 35 |
include_task_folder("src/backend/tasks/")
|
| 36 |
initialize_tasks('INFO')
|
| 37 |
|
| 38 |
print(tasks.ALL_TASKS)
|
| 39 |
|
| 40 |
+
for task in TASKS_HARNESS:
|
| 41 |
+
print(f"Selected Tasks: [{task}]")
|
| 42 |
+
results = evaluator.simple_evaluate(model="hf", model_args=eval_request.get_model_args(), tasks=[task.benchmark], num_fewshot=0,
|
|
|
|
|
|
|
| 43 |
batch_size=1, device=DEVICE, use_cache=None, limit=8, write_out=True)
|
| 44 |
+
print('AAA', results["results"])
|
| 45 |
+
|
| 46 |
+
# breakpoint()
|
| 47 |
|
| 48 |
|
| 49 |
if __name__ == "__main__":
|
src/backend/tasks/halueval/halueval_dialogue.yaml
CHANGED
|
@@ -4,23 +4,11 @@ dataset_name: dialogue_samples
|
|
| 4 |
output_type: generate_until
|
| 5 |
training_split: data
|
| 6 |
validation_split: data
|
|
|
|
|
|
|
| 7 |
doc_to_text: !function utils.doc_to_text_dialogue
|
| 8 |
doc_to_target: !function utils.doc_to_target_qa
|
| 9 |
process_results: !function utils.process_results_qa
|
| 10 |
-
fewshot_delimiter: "\n"
|
| 11 |
-
generation_kwargs:
|
| 12 |
-
until:
|
| 13 |
-
- "\n"
|
| 14 |
-
- "."
|
| 15 |
-
- ","
|
| 16 |
-
do_sample: false
|
| 17 |
-
temperature: 0.0
|
| 18 |
-
filter_list:
|
| 19 |
-
- name: remove_whitespace
|
| 20 |
-
filter:
|
| 21 |
-
- function: remove_whitespace
|
| 22 |
-
- function: take_first
|
| 23 |
-
target_delimiter: " "
|
| 24 |
metric_list:
|
| 25 |
- metric: em
|
| 26 |
aggregation: mean
|
|
|
|
| 4 |
output_type: generate_until
|
| 5 |
training_split: data
|
| 6 |
validation_split: data
|
| 7 |
+
test_split: data
|
| 8 |
+
num_fewshot: 0
|
| 9 |
doc_to_text: !function utils.doc_to_text_dialogue
|
| 10 |
doc_to_target: !function utils.doc_to_target_qa
|
| 11 |
process_results: !function utils.process_results_qa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
metric_list:
|
| 13 |
- metric: em
|
| 14 |
aggregation: mean
|
src/backend/tasks/halueval/halueval_qa.yaml
CHANGED
|
@@ -4,23 +4,11 @@ dataset_name: qa_samples
|
|
| 4 |
output_type: generate_until
|
| 5 |
training_split: data
|
| 6 |
validation_split: data
|
|
|
|
|
|
|
| 7 |
doc_to_text: !function utils.doc_to_text_qa
|
| 8 |
doc_to_target: !function utils.doc_to_target_qa
|
| 9 |
process_results: !function utils.process_results_qa
|
| 10 |
-
fewshot_delimiter: "\n"
|
| 11 |
-
generation_kwargs:
|
| 12 |
-
until:
|
| 13 |
-
- "\n"
|
| 14 |
-
- "."
|
| 15 |
-
- ","
|
| 16 |
-
do_sample: false
|
| 17 |
-
temperature: 0.0
|
| 18 |
-
filter_list:
|
| 19 |
-
- name: remove_whitespace
|
| 20 |
-
filter:
|
| 21 |
-
- function: remove_whitespace
|
| 22 |
-
- function: take_first
|
| 23 |
-
target_delimiter: " "
|
| 24 |
metric_list:
|
| 25 |
- metric: em
|
| 26 |
aggregation: mean
|
|
|
|
| 4 |
output_type: generate_until
|
| 5 |
training_split: data
|
| 6 |
validation_split: data
|
| 7 |
+
test_split: data
|
| 8 |
+
num_fewshot: 0
|
| 9 |
doc_to_text: !function utils.doc_to_text_qa
|
| 10 |
doc_to_target: !function utils.doc_to_target_qa
|
| 11 |
process_results: !function utils.process_results_qa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
metric_list:
|
| 13 |
- metric: em
|
| 14 |
aggregation: mean
|
src/backend/tasks/halueval/halueval_summarization.yaml
CHANGED
|
@@ -4,23 +4,11 @@ dataset_name: summarization_samples
|
|
| 4 |
output_type: generate_until
|
| 5 |
training_split: data
|
| 6 |
validation_split: data
|
|
|
|
|
|
|
| 7 |
doc_to_text: !function utils.doc_to_text_summarization
|
| 8 |
doc_to_target: !function utils.doc_to_target_qa
|
| 9 |
process_results: !function utils.process_results_qa
|
| 10 |
-
fewshot_delimiter: "\n"
|
| 11 |
-
generation_kwargs:
|
| 12 |
-
until:
|
| 13 |
-
- "\n"
|
| 14 |
-
- "."
|
| 15 |
-
- ","
|
| 16 |
-
do_sample: false
|
| 17 |
-
temperature: 0.0
|
| 18 |
-
filter_list:
|
| 19 |
-
- name: remove_whitespace
|
| 20 |
-
filter:
|
| 21 |
-
- function: remove_whitespace
|
| 22 |
-
- function: take_first
|
| 23 |
-
target_delimiter: " "
|
| 24 |
metric_list:
|
| 25 |
- metric: em
|
| 26 |
aggregation: mean
|
|
|
|
| 4 |
output_type: generate_until
|
| 5 |
training_split: data
|
| 6 |
validation_split: data
|
| 7 |
+
test_split: data
|
| 8 |
+
num_fewshot: 0
|
| 9 |
doc_to_text: !function utils.doc_to_text_summarization
|
| 10 |
doc_to_target: !function utils.doc_to_target_qa
|
| 11 |
process_results: !function utils.process_results_qa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
metric_list:
|
| 13 |
- metric: em
|
| 14 |
aggregation: mean
|
src/backend/tasks/halueval/utils.py
CHANGED
|
@@ -116,7 +116,7 @@ def compute_metrics_qa(gold_answer: str, prediction: str) -> dict[str, float]:
|
|
| 116 |
elif "No" in prediction:
|
| 117 |
prediction = "no"
|
| 118 |
|
| 119 |
-
is_exact =
|
| 120 |
|
| 121 |
res = {"correctness": 1.0 if is_correct else 0.0}
|
| 122 |
if is_correct:
|
|
|
|
| 116 |
elif "No" in prediction:
|
| 117 |
prediction = "no"
|
| 118 |
|
| 119 |
+
is_exact = gold_answer == prediction
|
| 120 |
|
| 121 |
res = {"correctness": 1.0 if is_correct else 0.0}
|
| 122 |
if is_correct:
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -86,7 +86,17 @@ class EvalResult:
|
|
| 86 |
continue
|
| 87 |
|
| 88 |
# We average all scores of a given metric (mostly for mmlu)
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 91 |
continue
|
| 92 |
|
|
|
|
| 86 |
continue
|
| 87 |
|
| 88 |
# We average all scores of a given metric (mostly for mmlu)
|
| 89 |
+
|
| 90 |
+
def post_process_results(results: dict) -> dict:
|
| 91 |
+
res_copy = results.copy()
|
| 92 |
+
for k, v in res_copy.items():
|
| 93 |
+
if "," in k:
|
| 94 |
+
tokens = k.split(",")
|
| 95 |
+
results[tokens[0]] = v
|
| 96 |
+
return results
|
| 97 |
+
|
| 98 |
+
accs = np.array([v.get(task.metric, None) for k, v in post_process_results(data["results"]).items() if task.benchmark in k])
|
| 99 |
+
|
| 100 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 101 |
continue
|
| 102 |
|