Spaces:
Sleeping
Sleeping
Probably v1
Browse files- app.py +15 -4
- bar_plot.py +109 -34
- data.py +30 -12
- h100_data.json +2 -2
- mi325_data.json +2 -2
- plot_utils.py +26 -10
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from bar_plot import create_matplotlib_bar_plot
|
|
| 6 |
|
| 7 |
|
| 8 |
# Configure matplotlib for better performance
|
| 9 |
-
matplotlib.use(
|
| 10 |
plt.ioff()
|
| 11 |
|
| 12 |
|
|
@@ -24,14 +24,25 @@ def refresh_plot():
|
|
| 24 |
sidebar_text = "**Transformer CI Dashboard**<br>-<br>**AMD runs on MI325**<br>**NVIDIA runs on A10**<br><br>*This dashboard only tracks important models*<br>*(Data refreshed)*"
|
| 25 |
return create_matplotlib_bar_plot(), sidebar_text
|
| 26 |
|
|
|
|
| 27 |
# Create Gradio interface
|
| 28 |
-
with gr.Blocks(
|
|
|
|
|
|
|
| 29 |
with gr.Row():
|
| 30 |
# Sidebar
|
| 31 |
with gr.Column(scale=1, elem_classes=["sidebar"]):
|
| 32 |
gr.Markdown("# 🤖 TCID", elem_classes=["sidebar-title"])
|
| 33 |
-
description = gr.Markdown(
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Main plot area
|
| 37 |
with gr.Column(elem_classes=["main-content"]):
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
# Configure matplotlib for better performance
|
| 9 |
+
matplotlib.use("Agg")
|
| 10 |
plt.ioff()
|
| 11 |
|
| 12 |
|
|
|
|
| 24 |
sidebar_text = "**Transformer CI Dashboard**<br>-<br>**AMD runs on MI325**<br>**NVIDIA runs on A10**<br><br>*This dashboard only tracks important models*<br>*(Data refreshed)*"
|
| 25 |
return create_matplotlib_bar_plot(), sidebar_text
|
| 26 |
|
| 27 |
+
|
| 28 |
# Create Gradio interface
|
| 29 |
+
with gr.Blocks(
|
| 30 |
+
title="Random Data Dashboard", css=load_css(), fill_height=True, fill_width=True
|
| 31 |
+
) as demo:
|
| 32 |
with gr.Row():
|
| 33 |
# Sidebar
|
| 34 |
with gr.Column(scale=1, elem_classes=["sidebar"]):
|
| 35 |
gr.Markdown("# 🤖 TCID", elem_classes=["sidebar-title"])
|
| 36 |
+
description = gr.Markdown(
|
| 37 |
+
"**Transformer CI Dashboard**<br>-<br>**AMD runs on MI325**<br>**NVIDIA runs on A10**<br><br>*This dashboard only tracks important models*",
|
| 38 |
+
elem_classes=["sidebar-description"],
|
| 39 |
+
)
|
| 40 |
+
summary_btn = gr.Button(
|
| 41 |
+
"summary\n📊",
|
| 42 |
+
variant="primary",
|
| 43 |
+
size="lg",
|
| 44 |
+
elem_classes=["summary-button"],
|
| 45 |
+
)
|
| 46 |
|
| 47 |
# Main plot area
|
| 48 |
with gr.Column(elem_classes=["main-content"]):
|
bar_plot.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
import matplotlib.pyplot as plt
|
|
|
|
| 2 |
import io
|
| 3 |
import numpy as np
|
| 4 |
import base64
|
| 5 |
|
| 6 |
from plot_utils import get_color_for_config
|
| 7 |
-
from data import load_data
|
| 8 |
|
| 9 |
|
| 10 |
def reorder_data(per_scenario_data: dict) -> dict:
|
|
@@ -13,8 +14,25 @@ def reorder_data(per_scenario_data: dict) -> dict:
|
|
| 13 |
def sorting_fn(key: str) -> float:
|
| 14 |
cfg = per_scenario_data[key]["config"]
|
| 15 |
attn_implementation = cfg["attn_implementation"]
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
keys.sort(key=sorting_fn)
|
| 20 |
per_scenario_data = {k: per_scenario_data[k] for k in keys}
|
|
@@ -27,6 +45,8 @@ def infer_bar_label(config: dict) -> str:
|
|
| 27 |
attn_implementation = "Eager"
|
| 28 |
elif config["attn_implementation"] == "flash_attention_2":
|
| 29 |
attn_implementation = "Flash attention"
|
|
|
|
|
|
|
| 30 |
elif config["attn_implementation"] == "sdpa":
|
| 31 |
attn_implementation = {
|
| 32 |
"flash_attention": "SDPA (flash attention)",
|
|
@@ -37,15 +57,24 @@ def infer_bar_label(config: dict) -> str:
|
|
| 37 |
else:
|
| 38 |
attn_implementation = "Unknown"
|
| 39 |
|
| 40 |
-
compile = "compiled" if config["
|
| 41 |
kernels = "kernelized" if config["kernelize"] else "no kernels"
|
| 42 |
return f"{attn_implementation}, {compile}, {kernels}"
|
| 43 |
|
| 44 |
|
| 45 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
# Prepare accumulators
|
| 47 |
current_x = 0
|
| 48 |
-
bar_kwargs = {"x": [], "height": [], "color": [], "label": []}
|
| 49 |
errors_bars = []
|
| 50 |
x_ticks = []
|
| 51 |
|
|
@@ -53,12 +82,13 @@ def make_bar_kwargs(per_device_data: dict, key: str) -> tuple[dict, list]:
|
|
| 53 |
per_scenario_data = device_data.get_bar_plot_data()
|
| 54 |
per_scenario_data = reorder_data(per_scenario_data)
|
| 55 |
device_xs = []
|
| 56 |
-
|
| 57 |
-
for scenario_name, scenario_data in per_scenario_data.items():
|
| 58 |
bar_kwargs["x"].append(current_x)
|
| 59 |
bar_kwargs["height"].append(np.median(scenario_data[key]))
|
| 60 |
bar_kwargs["color"].append(get_color_for_config(scenario_data["config"]))
|
| 61 |
bar_kwargs["label"].append(infer_bar_label(scenario_data["config"]))
|
|
|
|
| 62 |
errors_bars.append(np.std(scenario_data[key]))
|
| 63 |
device_xs.append(current_x)
|
| 64 |
current_x += 1
|
|
@@ -67,13 +97,14 @@ def make_bar_kwargs(per_device_data: dict, key: str) -> tuple[dict, list]:
|
|
| 67 |
current_x += 1.5
|
| 68 |
return bar_kwargs, errors_bars, x_ticks
|
| 69 |
|
|
|
|
| 70 |
def create_matplotlib_bar_plot() -> None:
|
| 71 |
"""Create side-by-side matplotlib bar charts for TTFT and TPOT data."""
|
| 72 |
|
| 73 |
# Create figure with dark theme - maximum size for full screen
|
| 74 |
-
plt.style.use(
|
| 75 |
fig, axs = plt.subplots(2, 1, figsize=(20, 11), sharex=True) # used to be 30, 16
|
| 76 |
-
fig.patch.set_facecolor(
|
| 77 |
|
| 78 |
# Load data and ensure coherence
|
| 79 |
per_device_data = load_data()
|
|
@@ -82,11 +113,16 @@ def create_matplotlib_bar_plot() -> None:
|
|
| 82 |
bs, seqlen, n_tok = device_data.ensure_coherence()
|
| 83 |
if batch_size is None:
|
| 84 |
batch_size, sequence_length, num_tokens_to_generate = bs, seqlen, n_tok
|
| 85 |
-
elif (bs, seqlen, n_tok) != (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
fig.suptitle(
|
| 87 |
f"Mismatch for batch size, sequence length and number of tokens to generate between configs: {bs} "
|
| 88 |
f"!= {batch_size}, {seqlen} != {sequence_length}, {n_tok} != {num_tokens_to_generate}",
|
| 89 |
-
color=
|
|
|
|
| 90 |
)
|
| 91 |
return None
|
| 92 |
|
|
@@ -99,27 +135,58 @@ def create_matplotlib_bar_plot() -> None:
|
|
| 99 |
draw_bar_plot(axs[1], itl_bars, itl_errors, "ITL (seconds)", x_ticks)
|
| 100 |
|
| 101 |
# Title and tight layout
|
| 102 |
-
title = "\n".join(
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
plt.tight_layout()
|
| 108 |
|
| 109 |
# Add common legend with full text
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# Put a legend to the right of the current axis
|
| 115 |
-
fig.legend(
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# Save plot to bytes with high DPI for crisp text
|
| 120 |
buffer = io.BytesIO()
|
| 121 |
-
plt.savefig(buffer, format=
|
| 122 |
-
bbox_inches='tight', dpi=150)
|
| 123 |
buffer.seek(0)
|
| 124 |
|
| 125 |
# Convert to base64 for HTML embedding
|
|
@@ -136,26 +203,34 @@ def create_matplotlib_bar_plot() -> None:
|
|
| 136 |
|
| 137 |
|
| 138 |
def draw_bar_plot(
|
| 139 |
-
ax: plt.Axes,
|
| 140 |
bar_kwargs: dict,
|
| 141 |
errors: list,
|
| 142 |
ylabel: str,
|
| 143 |
xticks: list[tuple[float, str]],
|
| 144 |
adapt_ylim: bool = False,
|
| 145 |
) -> None:
|
| 146 |
-
ax.set_facecolor(
|
| 147 |
-
ax.grid(True, alpha=0.3, color=
|
| 148 |
# Draw bars
|
| 149 |
-
_ = ax.bar(**bar_kwargs, width=1.0, edgecolor=
|
| 150 |
# Add error bars
|
| 151 |
ax.errorbar(
|
| 152 |
-
bar_kwargs["x"],
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
)
|
| 155 |
# Set labels, ticks and grid
|
| 156 |
-
ax.set_ylabel(ylabel, color=
|
| 157 |
ax.set_xticks([])
|
| 158 |
-
ax.tick_params(colors=
|
| 159 |
ax.set_xticks([xt[0] for xt in xticks], [xt[1] for xt in xticks], fontsize=16)
|
| 160 |
# Truncate axis to better fit the bars
|
| 161 |
if adapt_ylim:
|
|
@@ -163,5 +238,5 @@ def draw_bar_plot(
|
|
| 163 |
for h, e in zip(bar_kwargs["height"], errors):
|
| 164 |
new_ymin = min(new_ymin, 0.98 * (h - e))
|
| 165 |
new_ymax = max(new_ymax, 1.02 * (h + e))
|
| 166 |
-
ymin, ymax = ax.get_ylim()
|
| 167 |
ax.set_ylim(max(ymin, new_ymin), min(ymax, new_ymax))
|
|
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
+
import matplotlib.patches as mpatches
|
| 3 |
import io
|
| 4 |
import numpy as np
|
| 5 |
import base64
|
| 6 |
|
| 7 |
from plot_utils import get_color_for_config
|
| 8 |
+
from data import load_data, ModelBenchmarkData
|
| 9 |
|
| 10 |
|
| 11 |
def reorder_data(per_scenario_data: dict) -> dict:
|
|
|
|
| 14 |
def sorting_fn(key: str) -> float:
|
| 15 |
cfg = per_scenario_data[key]["config"]
|
| 16 |
attn_implementation = cfg["attn_implementation"]
|
| 17 |
+
attn_impl_prio = {
|
| 18 |
+
"flash_attention_2": 0,
|
| 19 |
+
"sdpa": 1,
|
| 20 |
+
"eager": 2,
|
| 21 |
+
"flex_attention": 3,
|
| 22 |
+
}[attn_implementation]
|
| 23 |
+
sdpa_backend_prio = {
|
| 24 |
+
None: -1,
|
| 25 |
+
"flash_attention": 0,
|
| 26 |
+
"math": 1,
|
| 27 |
+
"efficient_attention": 2,
|
| 28 |
+
"cudnn_attention": 3,
|
| 29 |
+
}[cfg["sdpa_backend"]]
|
| 30 |
+
return (
|
| 31 |
+
attn_impl_prio,
|
| 32 |
+
sdpa_backend_prio,
|
| 33 |
+
cfg["kernelize"],
|
| 34 |
+
cfg["compile_mode"] is not None,
|
| 35 |
+
)
|
| 36 |
|
| 37 |
keys.sort(key=sorting_fn)
|
| 38 |
per_scenario_data = {k: per_scenario_data[k] for k in keys}
|
|
|
|
| 45 |
attn_implementation = "Eager"
|
| 46 |
elif config["attn_implementation"] == "flash_attention_2":
|
| 47 |
attn_implementation = "Flash attention"
|
| 48 |
+
elif config["attn_implementation"] == "flex_attention":
|
| 49 |
+
attn_implementation = "Flex attention"
|
| 50 |
elif config["attn_implementation"] == "sdpa":
|
| 51 |
attn_implementation = {
|
| 52 |
"flash_attention": "SDPA (flash attention)",
|
|
|
|
| 57 |
else:
|
| 58 |
attn_implementation = "Unknown"
|
| 59 |
|
| 60 |
+
compile = "compiled" if config["compile_mode"] is not None else "no compile"
|
| 61 |
kernels = "kernelized" if config["kernelize"] else "no kernels"
|
| 62 |
return f"{attn_implementation}, {compile}, {kernels}"
|
| 63 |
|
| 64 |
|
| 65 |
+
def infer_bar_hatch(config: dict) -> str:
|
| 66 |
+
if config["compile_mode"] is not None:
|
| 67 |
+
return "/"
|
| 68 |
+
else:
|
| 69 |
+
return ""
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def make_bar_kwargs(
|
| 73 |
+
per_device_data: dict[str, ModelBenchmarkData], key: str
|
| 74 |
+
) -> tuple[dict, list]:
|
| 75 |
# Prepare accumulators
|
| 76 |
current_x = 0
|
| 77 |
+
bar_kwargs = {"x": [], "height": [], "color": [], "label": [], "hatch": []}
|
| 78 |
errors_bars = []
|
| 79 |
x_ticks = []
|
| 80 |
|
|
|
|
| 82 |
per_scenario_data = device_data.get_bar_plot_data()
|
| 83 |
per_scenario_data = reorder_data(per_scenario_data)
|
| 84 |
device_xs = []
|
| 85 |
+
|
| 86 |
+
for scenario_name, scenario_data in per_scenario_data.items():
|
| 87 |
bar_kwargs["x"].append(current_x)
|
| 88 |
bar_kwargs["height"].append(np.median(scenario_data[key]))
|
| 89 |
bar_kwargs["color"].append(get_color_for_config(scenario_data["config"]))
|
| 90 |
bar_kwargs["label"].append(infer_bar_label(scenario_data["config"]))
|
| 91 |
+
bar_kwargs["hatch"].append(infer_bar_hatch(scenario_data["config"]))
|
| 92 |
errors_bars.append(np.std(scenario_data[key]))
|
| 93 |
device_xs.append(current_x)
|
| 94 |
current_x += 1
|
|
|
|
| 97 |
current_x += 1.5
|
| 98 |
return bar_kwargs, errors_bars, x_ticks
|
| 99 |
|
| 100 |
+
|
| 101 |
def create_matplotlib_bar_plot() -> None:
|
| 102 |
"""Create side-by-side matplotlib bar charts for TTFT and TPOT data."""
|
| 103 |
|
| 104 |
# Create figure with dark theme - maximum size for full screen
|
| 105 |
+
plt.style.use("dark_background")
|
| 106 |
fig, axs = plt.subplots(2, 1, figsize=(20, 11), sharex=True) # used to be 30, 16
|
| 107 |
+
fig.patch.set_facecolor("#000000")
|
| 108 |
|
| 109 |
# Load data and ensure coherence
|
| 110 |
per_device_data = load_data()
|
|
|
|
| 113 |
bs, seqlen, n_tok = device_data.ensure_coherence()
|
| 114 |
if batch_size is None:
|
| 115 |
batch_size, sequence_length, num_tokens_to_generate = bs, seqlen, n_tok
|
| 116 |
+
elif (bs, seqlen, n_tok) != (
|
| 117 |
+
batch_size,
|
| 118 |
+
sequence_length,
|
| 119 |
+
num_tokens_to_generate,
|
| 120 |
+
):
|
| 121 |
fig.suptitle(
|
| 122 |
f"Mismatch for batch size, sequence length and number of tokens to generate between configs: {bs} "
|
| 123 |
f"!= {batch_size}, {seqlen} != {sequence_length}, {n_tok} != {num_tokens_to_generate}",
|
| 124 |
+
color="white",
|
| 125 |
+
fontsize=18,
|
| 126 |
)
|
| 127 |
return None
|
| 128 |
|
|
|
|
| 135 |
draw_bar_plot(axs[1], itl_bars, itl_errors, "ITL (seconds)", x_ticks)
|
| 136 |
|
| 137 |
# Title and tight layout
|
| 138 |
+
title = "\n".join(
|
| 139 |
+
[
|
| 140 |
+
"Time to first token and inter-token latency (lower is better)",
|
| 141 |
+
f"Batch size: {batch_size}, sequence length: {sequence_length}, new tokens: {num_tokens_to_generate}",
|
| 142 |
+
]
|
| 143 |
+
)
|
| 144 |
+
fig.suptitle(title, color="white", fontsize=20, y=1.005, linespacing=1.5)
|
| 145 |
plt.tight_layout()
|
| 146 |
|
| 147 |
# Add common legend with full text
|
| 148 |
+
legend_labels, legend_colors, legend_hatches = [], [], []
|
| 149 |
+
for label, color, hatch in zip(
|
| 150 |
+
ttft_bars["label"], ttft_bars["color"], ttft_bars["hatch"]
|
| 151 |
+
):
|
| 152 |
+
if label not in legend_labels:
|
| 153 |
+
legend_labels.append(label)
|
| 154 |
+
legend_colors.append(color)
|
| 155 |
+
legend_hatches.append(hatch)
|
| 156 |
+
|
| 157 |
+
# Make sure all attn implementations are equally represented
|
| 158 |
+
# implementations = {}
|
| 159 |
+
# for label, color, hatch in zip(legend_labels, legend_colors, legend_hatches):
|
| 160 |
+
# impl = label.split(",")[0]
|
| 161 |
+
# implementations[impl] = implementations.get(impl, []) + [(label, color, hatch)]
|
| 162 |
+
|
| 163 |
+
# n_max = max(len(impls) for impls in implementations.values())
|
| 164 |
+
# for label_color_pairs in implementations.values():
|
| 165 |
+
# for _ in range(len(label_color_pairs), n_max):
|
| 166 |
+
# label_color_pairs.append(("", "#000000"))
|
| 167 |
+
|
| 168 |
+
# legend_labels, legend_colors = zip(*sum(implementations.values(), []))
|
| 169 |
+
|
| 170 |
+
legend_handles = [
|
| 171 |
+
mpatches.Patch(facecolor=color, hatch=hatch, label=label, edgecolor="white")
|
| 172 |
+
for color, hatch, label in zip(legend_colors, legend_hatches, legend_labels)
|
| 173 |
+
]
|
| 174 |
|
| 175 |
# Put a legend to the right of the current axis
|
| 176 |
+
fig.legend(
|
| 177 |
+
handles=legend_handles,
|
| 178 |
+
loc="lower center",
|
| 179 |
+
ncol=4,
|
| 180 |
+
bbox_to_anchor=(0.515, -0.11),
|
| 181 |
+
facecolor="black",
|
| 182 |
+
edgecolor="white",
|
| 183 |
+
labelcolor="white",
|
| 184 |
+
fontsize=14,
|
| 185 |
+
)
|
| 186 |
|
| 187 |
# Save plot to bytes with high DPI for crisp text
|
| 188 |
buffer = io.BytesIO()
|
| 189 |
+
plt.savefig(buffer, format="png", facecolor="#000000", bbox_inches="tight", dpi=150)
|
|
|
|
| 190 |
buffer.seek(0)
|
| 191 |
|
| 192 |
# Convert to base64 for HTML embedding
|
|
|
|
| 203 |
|
| 204 |
|
| 205 |
def draw_bar_plot(
|
| 206 |
+
ax: plt.Axes,
|
| 207 |
bar_kwargs: dict,
|
| 208 |
errors: list,
|
| 209 |
ylabel: str,
|
| 210 |
xticks: list[tuple[float, str]],
|
| 211 |
adapt_ylim: bool = False,
|
| 212 |
) -> None:
|
| 213 |
+
ax.set_facecolor("#000000")
|
| 214 |
+
ax.grid(True, alpha=0.3, color="white", axis="y", zorder=0)
|
| 215 |
# Draw bars
|
| 216 |
+
_ = ax.bar(**bar_kwargs, width=1.0, edgecolor="white", linewidth=1, zorder=3)
|
| 217 |
# Add error bars
|
| 218 |
ax.errorbar(
|
| 219 |
+
bar_kwargs["x"],
|
| 220 |
+
bar_kwargs["height"],
|
| 221 |
+
yerr=errors,
|
| 222 |
+
fmt="none",
|
| 223 |
+
ecolor="white",
|
| 224 |
+
alpha=0.8,
|
| 225 |
+
elinewidth=1.5,
|
| 226 |
+
capthick=1.5,
|
| 227 |
+
capsize=4,
|
| 228 |
+
zorder=4,
|
| 229 |
)
|
| 230 |
# Set labels, ticks and grid
|
| 231 |
+
ax.set_ylabel(ylabel, color="white", fontsize=16)
|
| 232 |
ax.set_xticks([])
|
| 233 |
+
ax.tick_params(colors="white", labelsize=13)
|
| 234 |
ax.set_xticks([xt[0] for xt in xticks], [xt[1] for xt in xticks], fontsize=16)
|
| 235 |
# Truncate axis to better fit the bars
|
| 236 |
if adapt_ylim:
|
|
|
|
| 238 |
for h, e in zip(bar_kwargs["height"], errors):
|
| 239 |
new_ymin = min(new_ymin, 0.98 * (h - e))
|
| 240 |
new_ymax = max(new_ymax, 1.02 * (h + e))
|
| 241 |
+
ymin, ymax = ax.get_ylim()
|
| 242 |
ax.set_ylim(max(ymin, new_ymin), min(ymax, new_ymax))
|
data.py
CHANGED
|
@@ -1,20 +1,22 @@
|
|
| 1 |
import json
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
-
|
| 4 |
|
| 5 |
def make_id(config: dict, keys_to_ignore: list[str]) -> str:
|
| 6 |
keys = sorted(set(config.keys()))
|
| 7 |
return "_".join(str(config[k]) for k in keys if k not in keys_to_ignore)
|
| 8 |
|
| 9 |
-
class ModelBenchmarkData:
|
| 10 |
|
|
|
|
| 11 |
def __init__(self, json_path: str) -> None:
|
| 12 |
with open(json_path, "r") as f:
|
| 13 |
self.data: dict = json.load(f)
|
| 14 |
|
| 15 |
def compute_ttft(self, measures: dict) -> list[float]:
|
| 16 |
return [dts[0] for dts in measures["dt_tokens"]]
|
| 17 |
-
|
| 18 |
def compute_itl(self, measures: dict) -> list[float]:
|
| 19 |
return [
|
| 20 |
(dts[-1] - dts[0]) / (len(dts) - 1) if len(dts) > 2 else 0
|
|
@@ -34,7 +36,11 @@ class ModelBenchmarkData:
|
|
| 34 |
all_hyperparams = set()
|
| 35 |
for data in self.data.values():
|
| 36 |
config = data["config"]
|
| 37 |
-
hyperparams = (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
all_hyperparams.add(hyperparams)
|
| 39 |
if len(all_hyperparams) > 1:
|
| 40 |
raise ValueError(
|
|
@@ -42,7 +48,9 @@ class ModelBenchmarkData:
|
|
| 42 |
)
|
| 43 |
return all_hyperparams.pop()
|
| 44 |
|
| 45 |
-
def get_bar_plot_data(
|
|
|
|
|
|
|
| 46 |
# Gather data for each scenario
|
| 47 |
per_scenario_data = {}
|
| 48 |
for cfg_name, data in self.data.items():
|
|
@@ -57,25 +65,35 @@ class ModelBenchmarkData:
|
|
| 57 |
collapsed_keys = {}
|
| 58 |
for cfg_name, data in per_scenario_data.items():
|
| 59 |
keys_to_ignore = ["name"]
|
| 60 |
-
keys_to_ignore +=
|
| 61 |
-
keys_to_ignore +=
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
cfg_e2e = np.mean(data["e2e"])
|
| 64 |
other_name, other_e2e = collapsed_keys.get(cfg_id, (None, 1e16))
|
| 65 |
if cfg_e2e < other_e2e:
|
| 66 |
collapsed_keys[cfg_id] = (cfg_name, cfg_e2e)
|
| 67 |
-
per_scenario_data = {
|
|
|
|
|
|
|
| 68 |
|
| 69 |
return per_scenario_data
|
| 70 |
|
| 71 |
|
| 72 |
-
def load_data(
|
|
|
|
|
|
|
| 73 |
data = {
|
| 74 |
"MI325": ModelBenchmarkData("mi325_data.json"),
|
| 75 |
"H100": ModelBenchmarkData("h100_data.json"),
|
| 76 |
}
|
| 77 |
if keep_common_scenarios_only:
|
| 78 |
-
common_scenarios = set(data["MI325"].data.keys()) & set(
|
|
|
|
|
|
|
| 79 |
for device_name, device_data in data.items():
|
| 80 |
-
device_data.data = {
|
|
|
|
|
|
|
| 81 |
return data
|
|
|
|
| 1 |
import json
|
| 2 |
+
from copy import deepcopy
|
| 3 |
+
|
| 4 |
import numpy as np
|
| 5 |
+
|
| 6 |
|
| 7 |
def make_id(config: dict, keys_to_ignore: list[str]) -> str:
|
| 8 |
keys = sorted(set(config.keys()))
|
| 9 |
return "_".join(str(config[k]) for k in keys if k not in keys_to_ignore)
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
+
class ModelBenchmarkData:
|
| 13 |
def __init__(self, json_path: str) -> None:
|
| 14 |
with open(json_path, "r") as f:
|
| 15 |
self.data: dict = json.load(f)
|
| 16 |
|
| 17 |
def compute_ttft(self, measures: dict) -> list[float]:
|
| 18 |
return [dts[0] for dts in measures["dt_tokens"]]
|
| 19 |
+
|
| 20 |
def compute_itl(self, measures: dict) -> list[float]:
|
| 21 |
return [
|
| 22 |
(dts[-1] - dts[0]) / (len(dts) - 1) if len(dts) > 2 else 0
|
|
|
|
| 36 |
all_hyperparams = set()
|
| 37 |
for data in self.data.values():
|
| 38 |
config = data["config"]
|
| 39 |
+
hyperparams = (
|
| 40 |
+
config["batch_size"],
|
| 41 |
+
config["sequence_length"],
|
| 42 |
+
config["num_tokens_to_generate"],
|
| 43 |
+
)
|
| 44 |
all_hyperparams.add(hyperparams)
|
| 45 |
if len(all_hyperparams) > 1:
|
| 46 |
raise ValueError(
|
|
|
|
| 48 |
)
|
| 49 |
return all_hyperparams.pop()
|
| 50 |
|
| 51 |
+
def get_bar_plot_data(
|
| 52 |
+
self, collapse_on_cache: bool = True, collapse_on_compile_mode: bool = True
|
| 53 |
+
) -> dict:
|
| 54 |
# Gather data for each scenario
|
| 55 |
per_scenario_data = {}
|
| 56 |
for cfg_name, data in self.data.items():
|
|
|
|
| 65 |
collapsed_keys = {}
|
| 66 |
for cfg_name, data in per_scenario_data.items():
|
| 67 |
keys_to_ignore = ["name"]
|
| 68 |
+
keys_to_ignore += ["use_cache"] if collapse_on_cache else []
|
| 69 |
+
keys_to_ignore += ["compile_mode"] if collapse_on_compile_mode else []
|
| 70 |
+
duply_cfg = deepcopy(data["config"])
|
| 71 |
+
duply_cfg["compiled"] = duply_cfg["compile_mode"] is not None
|
| 72 |
+
cfg_id = make_id(duply_cfg, keys_to_ignore)
|
| 73 |
cfg_e2e = np.mean(data["e2e"])
|
| 74 |
other_name, other_e2e = collapsed_keys.get(cfg_id, (None, 1e16))
|
| 75 |
if cfg_e2e < other_e2e:
|
| 76 |
collapsed_keys[cfg_id] = (cfg_name, cfg_e2e)
|
| 77 |
+
per_scenario_data = {
|
| 78 |
+
k: per_scenario_data[k] for k, _ in collapsed_keys.values()
|
| 79 |
+
}
|
| 80 |
|
| 81 |
return per_scenario_data
|
| 82 |
|
| 83 |
|
| 84 |
+
def load_data(
|
| 85 |
+
keep_common_scenarios_only: bool = False,
|
| 86 |
+
) -> dict[str, ModelBenchmarkData]:
|
| 87 |
data = {
|
| 88 |
"MI325": ModelBenchmarkData("mi325_data.json"),
|
| 89 |
"H100": ModelBenchmarkData("h100_data.json"),
|
| 90 |
}
|
| 91 |
if keep_common_scenarios_only:
|
| 92 |
+
common_scenarios = set(data["MI325"].data.keys()) & set(
|
| 93 |
+
data["H100"].data.keys()
|
| 94 |
+
)
|
| 95 |
for device_name, device_data in data.items():
|
| 96 |
+
device_data.data = {
|
| 97 |
+
k: v for k, v in device_data.data.items() if k in common_scenarios
|
| 98 |
+
}
|
| 99 |
return data
|
h100_data.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee66b31725d29b9faaf38a437f4ca3ba8251f3ddc6eb9733650dac8b414bd73e
|
| 3 |
+
size 1848790
|
mi325_data.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e85e274fdf29798e4e1093df3beec82d1369fe306e720811670fe68176e9bc51
|
| 3 |
+
size 1872352
|
plot_utils.py
CHANGED
|
@@ -1,25 +1,35 @@
|
|
| 1 |
# Color manipulation functions
|
| 2 |
def hex_to_rgb(hex_color):
|
| 3 |
-
hex_color = hex_color.lstrip(
|
| 4 |
r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16)
|
| 5 |
return r, g, b
|
| 6 |
|
|
|
|
| 7 |
def blend_colors(color1, color2, blend_strength):
|
| 8 |
rgb1 = hex_to_rgb(color1)
|
| 9 |
rgb2 = hex_to_rgb(color2)
|
| 10 |
-
new_color = tuple(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
return rgb_to_hex(*new_color)
|
| 12 |
|
|
|
|
| 13 |
def increase_brightness(r, g, b, factor):
|
| 14 |
return tuple(map(lambda x: int(x + (255 - x) * factor), (r, g, b)))
|
| 15 |
|
|
|
|
| 16 |
def decrease_brightness(r, g, b, factor):
|
| 17 |
return tuple(map(lambda x: int(x * factor), (r, g, b)))
|
| 18 |
|
|
|
|
| 19 |
def increase_saturation(r, g, b, factor) -> tuple[int, int, int]:
|
| 20 |
gray = 0.299 * r + 0.587 * g + 0.114 * b
|
| 21 |
return tuple(map(lambda x: int(gray + (x - gray) * factor), (r, g, b)))
|
| 22 |
|
|
|
|
| 23 |
def rgb_to_hex(r, g, b):
|
| 24 |
r, g, b = map(lambda x: min(max(x, 0), 255), (r, g, b))
|
| 25 |
return f"#{r:02x}{g:02x}{b:02x}"
|
|
@@ -27,25 +37,31 @@ def rgb_to_hex(r, g, b):
|
|
| 27 |
|
| 28 |
# Color assignment function
|
| 29 |
def get_color_for_config(config: dict):
|
| 30 |
-
attn_implementation, sdpa_backend =
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
# Eager
|
| 34 |
if attn_implementation == "eager":
|
| 35 |
color = blend_colors("#FA7F7FFF", "#FF2D2DFF", barycenter)
|
| 36 |
-
|
| 37 |
# SDPA - math
|
| 38 |
elif attn_implementation == "sdpa" and sdpa_backend == "math":
|
| 39 |
color = blend_colors("#7AB8FFFF", "#277CD0FF", barycenter)
|
| 40 |
-
|
| 41 |
# SDPA - flash attention
|
| 42 |
-
elif attn_implementation == "sdpa" and sdpa_backend
|
| 43 |
color = blend_colors("#81FF9CFF", "#219F3CFF", barycenter)
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
# Flash attention
|
| 46 |
elif attn_implementation == "flash_attention_2":
|
| 47 |
color = blend_colors("#FFDB70FF", "#DFD002FF", barycenter)
|
|
|
|
|
|
|
|
|
|
| 48 |
else:
|
| 49 |
raise ValueError(f"Unknown attention implementation: {attn_implementation}")
|
| 50 |
-
|
| 51 |
return color
|
|
|
|
| 1 |
# Color manipulation functions
|
| 2 |
def hex_to_rgb(hex_color):
|
| 3 |
+
hex_color = hex_color.lstrip("#")
|
| 4 |
r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16)
|
| 5 |
return r, g, b
|
| 6 |
|
| 7 |
+
|
| 8 |
def blend_colors(color1, color2, blend_strength):
|
| 9 |
rgb1 = hex_to_rgb(color1)
|
| 10 |
rgb2 = hex_to_rgb(color2)
|
| 11 |
+
new_color = tuple(
|
| 12 |
+
map(
|
| 13 |
+
lambda i: int(rgb1[i] * blend_strength + rgb2[i] * (1 - blend_strength)),
|
| 14 |
+
range(3),
|
| 15 |
+
)
|
| 16 |
+
)
|
| 17 |
return rgb_to_hex(*new_color)
|
| 18 |
|
| 19 |
+
|
| 20 |
def increase_brightness(r, g, b, factor):
|
| 21 |
return tuple(map(lambda x: int(x + (255 - x) * factor), (r, g, b)))
|
| 22 |
|
| 23 |
+
|
| 24 |
def decrease_brightness(r, g, b, factor):
|
| 25 |
return tuple(map(lambda x: int(x * factor), (r, g, b)))
|
| 26 |
|
| 27 |
+
|
| 28 |
def increase_saturation(r, g, b, factor) -> tuple[int, int, int]:
|
| 29 |
gray = 0.299 * r + 0.587 * g + 0.114 * b
|
| 30 |
return tuple(map(lambda x: int(gray + (x - gray) * factor), (r, g, b)))
|
| 31 |
|
| 32 |
+
|
| 33 |
def rgb_to_hex(r, g, b):
|
| 34 |
r, g, b = map(lambda x: min(max(x, 0), 255), (r, g, b))
|
| 35 |
return f"#{r:02x}{g:02x}{b:02x}"
|
|
|
|
| 37 |
|
| 38 |
# Color assignment function
|
| 39 |
def get_color_for_config(config: dict):
|
| 40 |
+
attn_implementation, sdpa_backend = (
|
| 41 |
+
config["attn_implementation"],
|
| 42 |
+
config["sdpa_backend"],
|
| 43 |
+
)
|
| 44 |
+
compile_mode = config["compile_mode"] is not None
|
| 45 |
+
barycenter = 1 - (compile_mode + 2 * config["kernelize"]) / 3
|
| 46 |
|
| 47 |
+
# Eager
|
| 48 |
if attn_implementation == "eager":
|
| 49 |
color = blend_colors("#FA7F7FFF", "#FF2D2DFF", barycenter)
|
|
|
|
| 50 |
# SDPA - math
|
| 51 |
elif attn_implementation == "sdpa" and sdpa_backend == "math":
|
| 52 |
color = blend_colors("#7AB8FFFF", "#277CD0FF", barycenter)
|
|
|
|
| 53 |
# SDPA - flash attention
|
| 54 |
+
elif attn_implementation == "sdpa" and sdpa_backend in [None, "flash_attention"]:
|
| 55 |
color = blend_colors("#81FF9CFF", "#219F3CFF", barycenter)
|
| 56 |
+
# SDPA - efficient attention
|
| 57 |
+
elif attn_implementation == "sdpa" and sdpa_backend == "efficient_attention":
|
| 58 |
+
color = blend_colors("#DB81FFFF", "#9C33B1FF", barycenter)
|
| 59 |
# Flash attention
|
| 60 |
elif attn_implementation == "flash_attention_2":
|
| 61 |
color = blend_colors("#FFDB70FF", "#DFD002FF", barycenter)
|
| 62 |
+
# Flex attention
|
| 63 |
+
elif attn_implementation == "flex_attention":
|
| 64 |
+
color = blend_colors("#DB81FFFF", "#9C33B1FF", barycenter)
|
| 65 |
else:
|
| 66 |
raise ValueError(f"Unknown attention implementation: {attn_implementation}")
|
|
|
|
| 67 |
return color
|