| import gradio as gr | |
| import spaces | |
| import torch | |
| from torch.cuda.amp import autocast | |
| import subprocess | |
| from huggingface_hub import InferenceClient | |
| import os | |
| import psutil | |
| import json | |
| import subprocess | |
| from threading import Thread | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| from transformers import AutoConfig, AutoModel | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch | |
| from accelerate import Accelerator | |
| subprocess.run( | |
| "pip install psutil", | |
| shell=True, | |
| ) | |
| import bitsandbytes as bnb # Import bitsandbytes for 8-bit quantization | |
| from datetime import datetime | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| # pip install 'git+https://github.com/huggingface/transformers.git' | |
| token=os.getenv('token') | |
| print('token = ',token) | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import transformers | |
| # model_id = "mistralai/Mistral-7B-v0.3" | |
| # model_id = "microsoft/Phi-3-medium-4k-instruct" | |
| # # model_id = "microsoft/phi-4" | |
| # # model_id = "Qwen/Qwen2-7B-Instruct" | |
| # tokenizer = AutoTokenizer.from_pretrained( | |
| # # model_id | |
| # model_id, | |
| # # use_fast=False | |
| # token= token, | |
| # trust_remote_code=True) | |
| # accelerator = Accelerator() | |
| # model = AutoModelForCausalLM.from_pretrained(model_id, token= token, | |
| # # torch_dtype= torch.uint8, | |
| # torch_dtype=torch.bfloat16, | |
| # # load_in_8bit=True, | |
| # # # # torch_dtype=torch.fl, | |
| # attn_implementation="flash_attention_2", | |
| # low_cpu_mem_usage=True, | |
| # trust_remote_code=True, | |
| # device_map='cuda', | |
| # # device_map=accelerator.device_map, | |
| # ) | |
| # # | |
| # model = accelerator.prepare(model) | |
| # from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| # pipe = pipeline( | |
| # "text-generation", | |
| # model=model, | |
| # tokenizer=tokenizer, | |
| # ) | |
| # pipeline = transformers.pipeline( | |
| # "text-generation", | |
| # model="microsoft/phi-4", | |
| # model_kwargs={"torch_dtype": "auto"}, | |
| # device_map="auto", | |
| # ) | |
| # device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" }) | |
| # Load the model with the inferred device map | |
| # model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"]) | |
| # model.half() | |
| # MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B" | |
| MODEL_ID = "microsoft/phi-4" | |
| CHAT_TEMPLATE = "َAuto" | |
| MODEL_NAME = MODEL_ID.split("/")[-1] | |
| CONTEXT_LENGTH = 16000 | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| device_map="auto", | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch.bfloat16, | |
| # quantization_config=quantization_config, | |
| attn_implementation="flash_attention_2", | |
| ) | |
| accelerator = Accelerator() | |
| model = accelerator.prepare(model) | |
| import json | |
| def str_to_json(str_obj): | |
| json_obj = json.loads(str_obj) | |
| return json_obj | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p): | |
| messages = [] | |
| json_obj = str_to_json(message) | |
| print(json_obj) | |
| messages= json_obj | |
| stop_tokens = ["<|endoftext|>", "<|im_end|>"] | |
| instruction ="" #'<|im_start|>system\n' + system_message + '\n<|im_end|>\n' | |
| for qq in messages: | |
| role= qq['role'] | |
| content= qq['content'] | |
| instruction+= f'<|im_start|>{role}<|im_sep|>\n{content}\n<|im_end|>\n' | |
| instruction+='<|im_start|>assistant<|im_sep|>\n' | |
| # for user, assistant in history: | |
| # instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' | |
| # instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' | |
| print(instruction) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) | |
| input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
| if input_ids.shape[1] > CONTEXT_LENGTH: | |
| input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
| attention_mask = attention_mask[:, -CONTEXT_LENGTH:] | |
| generate_kwargs = dict( | |
| input_ids=input_ids.to(device), | |
| attention_mask=attention_mask.to(device), | |
| streamer=streamer, | |
| do_sample=True, | |
| temperature=temperature, | |
| max_new_tokens=max_tokens, | |
| top_k=40, | |
| repetition_penalty=1.1, | |
| top_p=0.95 | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs= "" | |
| for new_token in streamer: | |
| print(new_token," ") | |
| outputs = outputs+ new_token | |
| print("output ",outputs) | |
| yield outputs | |
| # yield 'retuend' | |
| # model.to(accelerator.device) | |
| # messages = [] | |
| # json_obj = str_to_json(message) | |
| # print(json_obj) | |
| # messages= json_obj | |
| # # input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device) | |
| # # input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda') | |
| # # print(f"Converted input_ids dtype: {input_ids.dtype}") | |
| # # input_str= str(input_ids2) | |
| # # print('input str = ', input_str) | |
| # generation_args = { | |
| # "max_new_tokens": max_tokens, | |
| # "return_full_text": False, | |
| # "temperature": temperature, | |
| # "do_sample": False, | |
| # } | |
| # output = pipe(messages, **generation_args) | |
| # print(output[0]['generated_text']) | |
| # gen_text=output[0]['generated_text'] | |
| # # with torch.no_grad(): | |
| # # gen_tokens = model.generate( | |
| # # input_ids, | |
| # # max_new_tokens=max_tokens, | |
| # # # do_sample=True, | |
| # # temperature=temperature, | |
| # # ) | |
| # # gen_text = tokenizer.decode(gen_tokens[0]) | |
| # # print(gen_text) | |
| # # gen_text= gen_text.replace(input_str,'') | |
| # # gen_text= gen_text.replace('<|im_end|>','') | |
| # yield gen_text | |
| # messages = [ | |
| # # {"role": "user", "content": "What is your favourite condiment?"}, | |
| # # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, | |
| # # {"role": "user", "content": "Do you have mayonnaise recipes?"} | |
| # ] | |
| # inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") | |
| # outputs = model.generate(inputs, max_new_tokens=2000) | |
| # gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # print(gen_text) | |
| # yield gen_text | |
| # for val in history: | |
| # if val[0]: | |
| # messages.append({"role": "user", "content": val[0]}) | |
| # if val[1]: | |
| # messages.append({"role": "assistant", "content": val[1]}) | |
| # messages.append({"role": "user", "content": message}) | |
| # response = "" | |
| # for message in client.chat_completion( | |
| # messages, | |
| # max_tokens=max_tokens, | |
| # stream=True, | |
| # temperature=temperature, | |
| # top_p=top_p, | |
| # ): | |
| # token = message.choices[0].delta.content | |
| # response += token | |
| # yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |