Spaces:
Runtime error
Runtime error
Commit
·
ac7bed8
1
Parent(s):
a5b9de2
Add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %% [markdown]
|
| 2 |
+
# # 🖼️ Tiny Stable Diffusion (CPU Version)
|
| 3 |
+
# **0.9GB Model | No GPU Required**
|
| 4 |
+
|
| 5 |
+
# %% [markdown]
|
| 6 |
+
# ## 1. Install Requirements
|
| 7 |
+
!pip install -q torch diffusers transformers pillow huggingface_hub
|
| 8 |
+
import torch
|
| 9 |
+
from diffusers import StableDiffusionPipeline
|
| 10 |
+
from huggingface_hub import snapshot_download
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
# Force CPU mode
|
| 16 |
+
torch.backends.quantized.engine = 'qnnpack' # ARM optimization
|
| 17 |
+
device = torch.device("cpu")
|
| 18 |
+
|
| 19 |
+
# %% [markdown]
|
| 20 |
+
# ## 2. Download Model (0.9GB)
|
| 21 |
+
model_path = "./tiny_model"
|
| 22 |
+
os.makedirs(model_path, exist_ok=True)
|
| 23 |
+
|
| 24 |
+
# Download with progress bar
|
| 25 |
+
print("Downloading model... (this may take a few minutes)")
|
| 26 |
+
snapshot_download(
|
| 27 |
+
repo_id="nota-ai/bk-sdm-tiny",
|
| 28 |
+
local_dir=model_path,
|
| 29 |
+
ignore_patterns=["*.bin", "*.fp16*", "*.onnx"],
|
| 30 |
+
local_dir_use_symlinks=False
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Verify download
|
| 34 |
+
if not os.listdir(model_path):
|
| 35 |
+
raise ValueError("Model failed to download! Check internet connection")
|
| 36 |
+
else:
|
| 37 |
+
print("✔ Model downloaded successfully")
|
| 38 |
+
|
| 39 |
+
# %% [markdown]
|
| 40 |
+
# ## 3. Load Optimized Pipeline
|
| 41 |
+
print("Loading model...")
|
| 42 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 43 |
+
model_path,
|
| 44 |
+
torch_dtype=torch.float32,
|
| 45 |
+
safety_checker=None,
|
| 46 |
+
requires_safety_checker=False
|
| 47 |
+
).to(device)
|
| 48 |
+
|
| 49 |
+
# Memory optimizations
|
| 50 |
+
pipe.enable_attention_slicing()
|
| 51 |
+
pipe.unet = torch.compile(pipe.unet) # Compile for faster inference
|
| 52 |
+
|
| 53 |
+
# %% [markdown]
|
| 54 |
+
# ## 4. Generation Function
|
| 55 |
+
def generate_image(prompt, steps=15, seed=42):
|
| 56 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 57 |
+
|
| 58 |
+
print(f"Generating: {prompt}")
|
| 59 |
+
image = pipe(
|
| 60 |
+
prompt,
|
| 61 |
+
num_inference_steps=steps,
|
| 62 |
+
guidance_scale=7.0,
|
| 63 |
+
generator=generator,
|
| 64 |
+
width=256,
|
| 65 |
+
height=256
|
| 66 |
+
).images[0]
|
| 67 |
+
|
| 68 |
+
return image
|
| 69 |
+
|
| 70 |
+
# %% [markdown]
|
| 71 |
+
# ## 5. Gradio Interface
|
| 72 |
+
with gr.Blocks(title="Tiny Diffusion (CPU)", css="footer {visibility: hidden}") as demo:
|
| 73 |
+
gr.Markdown("## 🎨 CPU Image Generator (0.9GB Model)")
|
| 74 |
+
with gr.Row():
|
| 75 |
+
prompt = gr.Textbox(label="Prompt",
|
| 76 |
+
value="a cute robot wearing a hat",
|
| 77 |
+
placeholder="Describe your image...")
|
| 78 |
+
with gr.Row():
|
| 79 |
+
steps = gr.Slider(5, 25, value=15, label="Steps")
|
| 80 |
+
seed = gr.Number(42, label="Seed")
|
| 81 |
+
with gr.Row():
|
| 82 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 83 |
+
with gr.Row():
|
| 84 |
+
output = gr.Image(label="Output", width=256, height=256)
|
| 85 |
+
|
| 86 |
+
generate_btn.click(
|
| 87 |
+
fn=generate_image,
|
| 88 |
+
inputs=[prompt, steps, seed],
|
| 89 |
+
outputs=output
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# %% [markdown]
|
| 93 |
+
# ## 6. Launch App
|
| 94 |
+
print("Starting interface...")
|
| 95 |
+
demo.launch(
|
| 96 |
+
server_name="0.0.0.0",
|
| 97 |
+
server_port=7860,
|
| 98 |
+
show_error=True
|
| 99 |
+
)
|