Spaces:
Running
Running
File size: 16,895 Bytes
1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a ea0ddf6 1e32f6a ea0ddf6 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a fd5d5af 1e32f6a d635592 1e32f6a d635592 1e32f6a d635592 1e32f6a d635592 1e32f6a d635592 1e32f6a f982c86 1e32f6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
// 1. Import transformers.js
import { pipeline, env } from './transformers.min.js';
// 2. Constants
env.allowLocalModels = true;
const MODEL_NAME = 'nomic-ai/nomic-embed-text-v1.5';
const EMBEDDING_DIM = 256;
const INDEX_PATH = 'data/quotes_index.bin';
const APPROX_MODEL_SIZE_MB = 180; // Actual observed size of nomic-embed-text-v1.5 model
const DB_NAME = 'QuoteSearchDB';
const DB_VERSION = 1;
const STORE_NAME = 'quoteIndex';
let model;
let indexData;
let isReady = false;
// IndexedDB Helper Functions
function openDB() {
return new Promise((resolve, reject) => {
const request = indexedDB.open(DB_NAME, DB_VERSION);
request.onupgradeneeded = (event) => {
const db = event.target.result;
db.createObjectStore(STORE_NAME, { keyPath: 'id' });
};
request.onsuccess = (event) => {
resolve(event.target.result);
};
request.onerror = (event) => {
reject('IndexedDB error: ' + event.target.errorCode);
};
});
}
async function getFromDB(key) {
const db = await openDB();
return new Promise((resolve, reject) => {
const transaction = db.transaction([STORE_NAME], 'readonly');
const store = transaction.objectStore(STORE_NAME);
const request = store.get(key);
request.onsuccess = () => {
resolve(request.result ? request.result.value : null);
};
request.onerror = () => {
reject('Error getting data from DB');
};
});
}
async function putInDB(key, value) {
const db = await openDB();
return new Promise((resolve, reject) => {
const transaction = db.transaction([STORE_NAME], 'readwrite');
const store = transaction.objectStore(STORE_NAME);
const request = store.put({ id: key, value: value });
request.onsuccess = () => {
resolve();
};
request.onerror = () => {
reject('Error putting data in DB');
};
});
}
async function deleteFromDB(key) {
const db = await openDB();
return new Promise((resolve, reject) => {
const transaction = db.transaction([STORE_NAME], 'readwrite');
const store = transaction.objectStore(STORE_NAME);
const request = store.delete(key);
request.onsuccess = () => {
resolve();
};
request.onerror = () => {
reject('Error deleting data from DB');
};
});
}
// 3. Load Model and Index
async function loadModel() {
try {
// Inform the UI that the model will be downloaded/loaded
self.postMessage({ type: 'loading', payload: 'Downloading model (this may take a while)...' });
// Load the model with a progress callback
model = await pipeline('feature-extraction', MODEL_NAME, {
progress_callback: (progress) => {
// Make it explicit that this progress refers to model download or model file operations
const detailMessage = `Downloading model ${progress.status}: ${progress.file || ''} ${Math.floor(progress.progress || 0)}%`;
self.postMessage({ type: 'progress', payload: { ...progress, detail: detailMessage } });
}
});
} catch (error) {
console.error('Error loading model:', error);
self.postMessage({ type: 'error', payload: error.message });
throw error; // Re-throw to prevent further execution if model fails to load
}
}
async function loadIndex() {
try {
self.postMessage({ type: 'loading', payload: 'Checking for cached index file...' });
const cachedIndex = await getFromDB('quoteIndexData');
if (cachedIndex) {
indexData = cachedIndex;
self.postMessage({ type: 'loading', payload: 'Index loaded from cache.' });
} else {
// Inform UI that the index file will be downloaded
self.postMessage({ type: 'loading', payload: 'Downloading index file (this may take a while)...' });
// Fetch and parse the index file with progress reporting
const response = await fetch(INDEX_PATH);
const contentLength = response.headers.get('Content-Length');
const total = parseInt(contentLength, 10);
let loaded = 0;
const reader = response.body.getReader();
const chunks = [];
while (true) {
const { done, value } = await reader.read();
if (done) {
break;
}
chunks.push(value);
loaded += value.length;
const progress = {
status: 'Downloading Index',
progress: (loaded / total) * 100,
file: INDEX_PATH,
detail: `Downloading index file: ${Math.floor((loaded / total) * 100)}% (${(loaded / (1024 * 1024)).toFixed(2)}MB / ${(total / (1024 * 1024)).toFixed(2)}MB)`
};
self.postMessage({ type: 'progress', payload: progress });
}
const buffer = await new Response(new Blob(chunks)).arrayBuffer();
// Parse the binary file
let offset = 0;
const numQuotes = new Uint32Array(buffer.slice(offset, offset + 4))[0];
offset += 4;
const embeddingDim = new Uint16Array(buffer.slice(offset, offset + 2))[0];
offset += 2;
const scale = new Float32Array(buffer.slice(offset, offset + 4))[0];
offset += 4;
const metadataSize = new Uint32Array(buffer.slice(offset, offset + 4))[0];
offset += 4;
// Read metadata format flag (1 byte) first, then metadata bytes
let metadata_format = 0; // 0 = uncompressed JSON (legacy), 1 = gzip-compressed JSON
if (offset + 1 <= buffer.byteLength) {
metadata_format = new Uint8Array(buffer.slice(offset, offset + 1))[0];
offset += 1;
}
let metadataBytes = buffer.slice(offset, offset + metadataSize);
offset += metadataSize;
async function decodeMetadata(bytes, format) {
const decoder = new TextDecoder('utf-8');
if (format === 0) {
return JSON.parse(decoder.decode(bytes));
} else if (format === 1) {
// Try using native DecompressionStream if available
if (typeof DecompressionStream !== 'undefined') {
const ds = new DecompressionStream('gzip');
const decompressed = await new Response(new Blob([bytes]).stream().pipeThrough(ds)).arrayBuffer();
return JSON.parse(decoder.decode(decompressed));
} else {
// Fallback: DecompressionStream is not available. To support gzip in
// older browsers, add a browser-ready pako build to the repo and
// implement the decompression here. For now, fail with a clear error.
throw new Error('Gzip decompression not available: add DecompressionStream support or include pako in the worker.');
}
} else {
throw new Error('Unknown metadata format: ' + format);
}
}
const metadata = await decodeMetadata(metadataBytes, metadata_format);
const quantizedEmbeddings = new Int8Array(buffer.slice(offset));
// De-quantize embeddings (processing step) with progress reporting
const embeddings = new Float32Array(quantizedEmbeddings.length);
const totalEmbeddings = quantizedEmbeddings.length;
const updateInterval = Math.floor(totalEmbeddings / 100); // Update every 1%
for (let i = 0; i < totalEmbeddings; i++) {
embeddings[i] = quantizedEmbeddings[i] / scale;
if (updateInterval > 0 && i % updateInterval === 0) {
// This is processing (de-quantization), not download
const progress = {
status: 'Processing index (de-quantizing)',
progress: (i / totalEmbeddings) * 100,
file: INDEX_PATH,
detail: `Processing index: ${Math.floor((i / totalEmbeddings) * 100)}%`
};
self.postMessage({ type: 'progress', payload: progress });
}
}
indexData = {
metadata,
embeddings: reshape(embeddings, [numQuotes, embeddingDim]),
embeddingsByteLength: quantizedEmbeddings.byteLength // Store byteLength
};
await putInDB('quoteIndexData', indexData); // Store in IndexedDB
}
} catch (error) {
console.error('Error loading index:', error);
self.postMessage({ type: 'error', payload: error.message });
throw error;
}
}
async function load() {
try {
await loadIndex();
isReady = true;
self.postMessage({ type: 'ready' });
} catch (error) {
console.error('Error in worker load function:', error);
self.postMessage({ type: 'error', payload: error.message });
}
}
// 4. Listen for Messages
self.onmessage = async (event) => {
const { type, payload } = event.data;
if (type === 'search') {
if (!indexData) {
// Be explicit: index may be downloaded before search
self.postMessage({ type: 'loading', payload: 'Downloading index before running your search...' });
await loadIndex();
}
if (!model) {
self.postMessage({ type: 'loading', payload: 'Downloading model before running your search...' });
await loadModel();
}
self.postMessage({ type: 'loading', payload: 'Searching...' });
const results = await search(payload);
self.postMessage({ type: 'results', payload: results });
} else if (type === 'deleteData') {
self.postMessage({ type: 'loading', payload: 'Deleting cached data...' });
// Run cleanup with a timeout so UI doesn't get stuck if some API call blocks or takes too long
const cleanup = async () => {
// 1) Delete the specific object from the DB if present
try {
await deleteFromDB('quoteIndexData');
} catch (e) {
// ignore individual delete error and proceed to full DB deletion
}
// 2) Delete the entire IndexedDB database to ensure all stored artifacts are removed
await new Promise((resolve, reject) => {
const deleteRequest = indexedDB.deleteDatabase(DB_NAME);
deleteRequest.onsuccess = () => resolve();
deleteRequest.onerror = () => reject(deleteRequest.error || new Error('Failed to delete IndexedDB'));
deleteRequest.onblocked = () => {
// If deletion is blocked, still try to continue with cache cleanup
resolve();
};
});
// 3) Clear Cache Storage entries that may contain model or transformers resources
try {
if (typeof caches !== 'undefined' && caches.keys) {
const cacheNames = await caches.keys();
for (const cacheName of cacheNames) {
// Delete transformers related caches and any caches that contain the model name
if (cacheName.startsWith('transformers-cache') || cacheName.includes(MODEL_NAME.replace(/\//g, '-')) || cacheName.includes('nomic')) {
await caches.delete(cacheName);
}
}
}
} catch (e) {
// Non-fatal
console.warn('Cache cleanup error', e);
}
// 4) Clear localStorage keys commonly used by transformers.js or model caches (best-effort)
try {
if (typeof localStorage !== 'undefined') {
const keysToClear = [];
for (let i = 0; i < localStorage.length; i++) {
const key = localStorage.key(i);
if (!key) continue;
if (key.startsWith('transformers') || key.includes('transformers') || key.includes('nomic') || key.includes('hf_')) {
keysToClear.push(key);
}
}
for (const k of keysToClear) localStorage.removeItem(k);
}
} catch (e) {
// localStorage may not be available in worker-like contexts; ignore
}
// 5) Clear in-memory references
indexData = null;
model = null;
isReady = false;
};
// Timeout in ms
const TIMEOUT_MS = 8000;
try {
await Promise.race([
cleanup(),
new Promise((_, reject) => setTimeout(() => reject(new Error('cleanup-timeout')), TIMEOUT_MS))
]);
// If cleanup completed within timeout
self.postMessage({ type: 'dataDeleted', payload: 'Cached data deleted successfully.' });
} catch (error) {
if (error && error.message === 'cleanup-timeout') {
console.warn('deleteData: cleanup timed out');
// Post a success-like message so UI doesn't stay stuck; note that some cleanup may still be pending
self.postMessage({ type: 'dataDeleted', payload: 'Cached data deletion attempted (timed out). Some cleanup may remain.' });
} else {
console.error('deleteData error:', error);
self.postMessage({ type: 'error', payload: 'Failed to delete cached data: ' + (error && error.message ? error.message : String(error)) });
}
}
} else if (type === 'getIndexSize') {
try {
let totalSize = 0;
let indexCached = false;
let modelCached = false;
// Check if index is cached
const cachedIndex = await getFromDB('quoteIndexData');
if (cachedIndex) {
totalSize += JSON.stringify(cachedIndex.metadata).length + cachedIndex.embeddingsByteLength;
indexCached = true;
} else {
const response = await fetch(INDEX_PATH, { method: 'HEAD' });
const contentLength = response.headers.get('Content-Length');
totalSize += parseInt(contentLength, 10);
}
// Add approximate model size
totalSize += APPROX_MODEL_SIZE_MB * 1024 * 1024; // Convert MB to bytes
// Heuristic: assume model is cached if `model` object is initialized
if (model) {
modelCached = true;
}
self.postMessage({ type: 'indexSize', payload: { size: totalSize, indexCached: indexCached, modelCached: modelCached } });
} catch (error) {
self.postMessage({ type: 'error', payload: 'Failed to get index size: ' + error.message });
}
}
};
// 5. Search Function
async function search(query) {
if (!model || !indexData) {
return [];
}
// Generate query embedding
const queryEmbedding = await model("search_query: " + query, { pooling: 'mean', normalize: true });
const truncatedQueryEmbedding = queryEmbedding.data.slice(0, EMBEDDING_DIM);
// Calculate cosine similarities
const similarities = [];
for (let i = 0; i < indexData.embeddings.length; i++) {
const similarity = cosineSimilarity(truncatedQueryEmbedding, indexData.embeddings[i]);
similarities.push({ index: i, similarity });
}
// Sort by similarity
similarities.sort((a, b) => b.similarity - a.similarity);
// Get top 30 results
const topResults = similarities.slice(0, 30).map(item => {
return indexData.metadata[item.index];
});
return topResults;
}
// 6. Helper Functions
function cosineSimilarity(vecA, vecB) {
let dotProduct = 0;
let normA = 0;
let normB = 0;
for (let i = 0; i < vecA.length; i++) {
dotProduct += vecA[i] * vecB[i];
normA += vecA[i] * vecA[i];
normB += vecB[i] * vecB[i];
}
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
}
function reshape(array, shape) {
const reshaped = [];
let offset = 0;
for (let i = 0; i < shape[0]; i++) {
reshaped.push(array.slice(offset, offset + shape[1]));
offset += shape[1];
}
return reshaped;
}
|