HistoPath / histopath /tool /pathology.py
ryanDing26
App release
f2a52eb
def caption_slide(image_path, slide_name, prompt="Diagnosis:", output_dir="./output"):
"""Captions a Whole Slide Image(WSI).
Parameters
----------
image_path: str
Path to the whole slide image file.
slide_name: str
Name of whole slide image file
prompt: str
Starting prompt of the generated caption (default: "Diagnosis:")
output_dir: str, optional
Directory to save output files (default: "./output")
Returns
-------
str
Research log summarizing analysis and results
"""
import os
import glob
import timm
import torch
from PIL import Image
import lazyslide as zs
from pathlib import Path
from datetime import datetime
from transformers import AutoModel
from timm.layers import SwiGLUPacked
from timm.data import resolve_data_config
from huggingface_hub import login, whoami
from timm.data.transforms_factory import create_transform
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Step 1: Login to HuggingFace
login(token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"))
hf_user = whoami()
username = hf_user['name']
# Step 2: Setup models and transforms
virchow2 = timm.create_model("hf-hub:paige-ai/Virchow2", pretrained=True, mlp_layer=SwiGLUPacked, act_layer=torch.nn.SiLU)
virchow2 = virchow2.eval()
prism = AutoModel.from_pretrained('paige-ai/Prism', trust_remote_code=True)
prism = prism.to(device)
transforms = create_transform(**resolve_data_config(virchow2.pretrained_cfg, model=virchow2))
tile_embeddings = []
# Step 3: Initialize, process, tile, and encode slide file(s)
files = [f for f in glob.glob(f"{image_path}/*") if slide_name in os.path.basename(f)]
if len(files) == 1 and files[0].endswith(".svs"):
# dealing with the whole slide in itself
wsi = zs.open_wsi(f"{image_path}/{slide_name}.svs")
tiles, tile_spec = zs.pp.tile_tissues(wsi, 224, mpp=0.5, return_tiles=True)
tile_dir = Path("tiles")
tile_dir.mkdir(exist_ok=True)
for _, row in tiles.iterrows():
tile_id = row["tile_id"]
geometry = row["geometry"] # shapely Polygon of the tile
# Get top-left corner of the tile
minx, miny, maxx, maxy = geometry.bounds
width = int(maxx - minx)
height = int(maxy - miny)
# Read the tile from WSI
tile_img = wsi.read_region(int(minx), int(miny), width, height, tile_spec.ops_level)
tile_img = Image.fromarray(tile_img, 'RGB')
tile_tensor = transforms(tile_img).unsqueeze(0)
output = virchow2(tile_tensor)
class_token = output[:, 0]
patch_tokens = output[:, 1:]
embedding = torch.cat([class_token, patch_tokens.mean(1)], dim=-1)
tile_embeddings.append(embedding)
# Save as PNG
tile_path = tile_dir / f"tile_{tile_id:05d}.png"
tile_img.save(tile_path)
else:
# dealing with patches (not svs); need to encode tiles with Virchow directly
for file in files:
tile_img = Image.open(file).convert('RGB')
tile_tensor = transforms(tile_img).unsqueeze(0)
output = virchow2(tile_tensor)
class_token = output[:, 0]
patch_tokens = output[:, 1:]
embedding = torch.cat([class_token, patch_tokens.mean(1)], dim=-1)
tile_embeddings.append(embedding)
tile_embeddings = torch.cat(tile_embeddings, dim=0).unsqueeze(0).to(device)
with torch.autocast(device, torch.float16), torch.inference_mode():
reprs = prism.slide_representations(tile_embeddings)
genned_ids = prism.generate(
key_value_states=reprs['image_latents'],
do_sample=False,
num_beams=5,
num_beam_groups=1,
)
generated_caption = prism.untokenize(genned_ids)
# Step 4: Generate caption using latent representation and initial prompt
log = f"""
Research Log: Whole Slide Image Captioning
Date: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
Image Path: {os.path.basename(image_path)}
Slide Name: {slide_name}
Analysis Steps:
1. Logged into HuggingFace as {username}
2. Load in PRISM and Virchow2 models for encoding and captioning
3. Initialized, processed, tiled, and encode slide file(s)
4. Generated the caption with "{prompt}" as initial prompt
Results:
Caption
-------
{generated_caption}
"""
return log
def segment_slide(image_path, seg_type, model, output_dir="./output"):
"""Segment a Whole Slide Image (WSI).
Parameters
----------
image_path: str
Path to the whole slide image file.
seg_type: str
Type of segmentation to perform
model: str
Segmentation model to use
output_dir: str, optional
Directory to save output files (default: "./output")
Returns
-------
str
Research log summarizing analysis and results
"""
import os
import lazyslide as zs
from datetime import datetime
from huggingface_hub import login, whoami
# Step 1: Perform validity checking
usable_models = set(zs.models.list_models("segmentation"))
if seg_type not in {"cells", "cell_type", "semantic", "tissue", "artifact"}: return None
if model not in usable_models: return None
if seg_type == "tissue" and model not in {"grandqc", "pathprofiler"}: return None
if seg_type == "artifact" and model != "grandqc": return None
if seg_type == "cells" and model not in {"instanseg", "cellpose"}: return None
if seg_type == "cell_type" and model != "nulite": return None
# Step 2: Login to HuggingFace if gated model
login(token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"))
hf_user = whoami()
username = hf_user['name']
# Step 3: Open, process, and tile WSI image
wsi = zs.open_wsi(image_path)
zs.pp.find_tissues(wsi)
zs.pp.tile_graph(wsi)
#TODO Change values
zs.pp.tile_tissues(wsi, 512, background_fraction=0.95, mpp=0.5)
# Step 4: Appropriately Segment the slide
if seg_type == "cells":
zs.seg.cells(wsi, model=model)
elif seg_type == "cell_type":
zs.seg.cell_type(wsi, model=model)
elif seg_type == "semantic":
zs.seg.semantic(wsi, model=model)
elif seg_type == "tissue":
zs.seg.tissue(wsi, model=model)
else:
zs.seg.artifact(wsi, model=model)
# Step 5: Generate WSI with annotations
log = f"""
Research Log: Whole Slide Image Segmentation
Date: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
Image: {os.path.basename(image_path)}
Analysis Steps:
1. Performed validity checking
2. Logged into HuggingFace as {username}
3. Open WSI, find, tile and graph tissues
4. Segmented tissues using {model}
5. Generated and displayed segmentation results in {output_dir}
Results:
Output Files
"""
return log
def zero_shot_classification(image_path, labels, output_dir="./output"):
"""Performs Zero-Shot Classification from Whole Slide Images (WSIs).
Parameters
----------
image_path: str
Path to the whole slide image file.
labels: list
Labels of the classes to perform zero-shot classification
output_dir: str, optional
Directory to save output files (default: "./output")
Returns
-------
str
Research log summarizing analysis and results
"""
import os
import lazyslide as zs
from datetime import datetime
from huggingface_hub import login, whoami
# login to huggingface; zero shot via LazySlide only possible with gated models
login(token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"))
hf_user = whoami()
username = hf_user['name']
wsi = zs.open_wsi(image_path)
zs.pp.find_tissues(wsi)
zs.pp.tile_tissues(wsi, 512, background_fraction=0.95, mpp=0.5)
# might want to make tile graph
# zs.pp.tile_graph(wsi)
zs.tl.feature_extraction(wsi, "virchow")
zs.tl.feature_aggregation(wsi, feature_key="virchow", encoder="prism")
results = zs.tl.zero_shot_score(wsi, labels, feature_key="virchow_tiles")
log = f"""
Research Log: Zero-Shot Classification
Date: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
Image: {os.path.basename(image_path)}
Analysis Steps:
1. Logged in as user {username} to HuggingFace
2. Loaded WSI: {wsi}
3. Found tissues
4. Tiled tissues
5. Extracted features
6. Aggregated features
Results:
{results}
Output Files:
"""
print(log)
return log
def quantify_tumor_infiltrating_lymphocites(image_path, tile_size=256, tile_step=128, batch_size=4, output_dir="./output"):
"""Quantifies Tumor-Infiltrating Lymphocytes (TILs) from Whole-Slide Images (WSIs).
Parameters
----------
image_path: str
Path to the whole slide image file.
tile_size: int, optional
Size of inference tiles (default: 256)
tile_step: int, optional
Step size between inference tiles (default: 128)
batch_size: int, optional
Simulatenous inference tiles (default: 4)
output_dir: str, optional
Directory to save output files (default: "./output")
Returns
-------
str
Research log summarizing analysis and results
"""
import os
import numpy as np
import pandas as pd
import lazyslide as zs
from datetime import datetime
import matplotlib.pyplot as plt
# Step 1: Load WSI via LazySlide
try:
wsi = zs.open_wsi(image_path)
except Exception as e:
return f"Error loading WSI: {str(e)}"
# Step 2: Build a tissue mask + upscale it for higher resolutions
try:
tissue_mask = zs.pp.find_tissues(wsi, refine_level=0, to_hsv=True)
except:
return f"Error building tissue mask: {str(e)}"
# Step 3: Cell type segmentation using LazySlide"s seg.cell_types
try:
zs.seg.cell_types(wsi, batch_size=batch_size)
except Exception as e:
return f"Error during cell type segmentation: {str(e)}"
# Step 4: Load results
instance_map = zs.io.load_annotations(wsi, "instance_map")
type_map = zs.io.load_annotations(wsi, "cell_types") # may include TIL labels
instance_map_path = os.path.join(output_dir, "instance_map.npy")
type_map_path = os.path.join(output_dir, "cell_type_map.npy")
np.save(instance_map_path, instance_map)
np.save(type_map_path, type_map)
# Step 5: Define the TIL cell type ID (e.g., 1 for TILs)
til_type_id = 1
# Step 6: Compute TIL counts
valid_cells = tissue_mask & (type_map == til_type_id)
total_cells = np.count_nonzero(valid_cells)
til_cells = np.count_nonzero(valid_cells & (type_map == til_type_id))
# Step 7: Compute densities
pixel_area_mm2 = (wsi.mpp ** 2) / 1e6 # convert μm² to mm²
roi_area_mm2 = np.count_nonzero(tissue_mask) * pixel_area_mm2
til_density = til_cells / roi_area_mm2 if roi_area_mm2 > 0 else float("nan")
total_density = total_cells / roi_area_mm2 if roi_area_mm2 > 0 else float("nan")
til_fraction = til_cells / total_cells if total_cells > 0 else float("nan")
# Step 6: Save metrics CSV
metrics = {
"total_nuclei": total_cells,
"til_nuclei": til_cells,
"til_fraction": til_fraction,
"til_density_per_mm2": til_density,
"total_density_per_mm2": total_density,
"roi_area_mm2": roi_area_mm2
}
metrics_df = pd.DataFrame([metrics])
metrics_path = os.path.join(output_dir, "metrics.csv")
metrics_df.to_csv(metrics_path, index=False)
# Step 7: Create and save overlay visualization
overlay = np.zeros((*type_map.shape, 3), dtype=np.uint8)
overlay[type_map == til_type_id] = [255, 0, 0] # red for TILs
overlay[(type_map != til_type_id) & (instance_map > 0)] = [0, 255, 0] # green for other nuclei
overlay_path = os.path.join(output_dir, "overlay.png")
plt.imsave(overlay_path, overlay)
# Step 8: Create and return research log
log = f"""
Research Log: Quantification of Tumor-Infiltrating Lymphocytes
Date: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
Image: {os.path.basename(image_path)}
Analysis Steps:
1. Loaded and preprocessed the whole slide image into upscaled tiles
2. Applied NuLite Nucleus Instance Segmentation and Classification on tiles
3. Computed and quantified TIL (based on inflammed cell class) and total nuclear density
Results:
- Total Nuclei: {int(total_cells)}
- Total Inflammed Nuclei: {int(til_cells)}
- Fiber Density: {til_density:.2f}
Output Files:
- Segmented Image: {os.path.basename(overlay_path)}
- Measurements: {os.path.basename(metrics_path)}
"""
return log
def quantify_fibrosis(image_path, model="grandqc", output_dir="./output"):
"""Quantifies Fibrosis from Whole Slide Images (WSIs).
Parameters
----------
image_path: str
Path to the image file.
output_dir: str, optional
Directory to save output files (default: "./output")
model: str, optional
Tissue segmentation model to use (default: grandqc)
Returns
-------
str
Research log summarizing analysis and results
"""
import os
import lazyslide as zs
from datetime import datetime
# Step 1: Load WSI via LazySlide
try:
wsi = zs.open_wsi(image_path)
except Exception as e:
return f"Error loading WSI: {str(e)}"
zs.seg.tissue(wsi, model=model)
log = f"""
Research Log: Template
Date: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
Image: {os.path.basename(image_path)}
Analysis Steps:
1.
2.
3.
Results:
-
-
-
Output Files:
-
-
"""
return log
# def template(image_path, output_dir="./output"):
# """Template.
# Parameters
# ----------
# image_path: str
# Path to the image file.
# output_dir: str, optional
# Directory to save output files (default: "./output")
# Returns
# -------
# str
# Research log summarizing analysis and results
# """
# # Step X
# log = f"""
# Research Log: Template
# Date: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
# Image: {os.path.basename(image_path)}
# Analysis Steps:
# 1.
# 2.
# 3.
# Results:
# -
# -
# -
# Output Files:
# -
# -
# """
# return log