File size: 2,089 Bytes
4283167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50a25ae
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

app = FastAPI()

# === MODEL ===
MODEL_REPO = "sahil239/falcon-lora-chatbot"  # replace with your HF repo
BASE_MODEL = "tiiuae/falcon-rw-1b"

# === Load tokenizer ===
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token  # required to avoid padding error

# === Load base model and merge LoRA ===
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, trust_remote_code=True)
model = PeftModel.from_pretrained(base_model, MODEL_REPO)
model.eval()

# === Move to GPU if available ===
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# === Request Schema ===
class PromptRequest(BaseModel):
    prompt: str
    max_new_tokens: int = 200
    temperature: float = 0.7
    top_p: float = 0.95

@app.get("/")
def health_check():
    return {"status": "running"}

@app.post("/generate")
async def generate_text(req: PromptRequest):
    inputs = tokenizer(
        req.prompt,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=200
    )
    inputs = {k: v.to(device) for k, v in inputs.items()}

    with torch.no_grad():
        outputs = model.generate(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=req.max_new_tokens,
            temperature=req.temperature,
            top_p=req.top_p,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id,  # 🚨 Helps stop when sentence is "done"
            repetition_penalty=1.2,  # 🚫 Penalizes repeating phrases
            no_repeat_ngram_size=3
        )

    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return {"response": generated_text[len(req.prompt):].strip()}

    
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)