Spaces:
Sleeping
Sleeping
File size: 6,308 Bytes
73fd6db f915b8a 4195ed9 73fd6db f915b8a 73fd6db f915b8a 73fd6db f915b8a 4195ed9 f915b8a 4195ed9 f915b8a 4195ed9 f915b8a 4195ed9 f915b8a 4195ed9 f915b8a 4195ed9 f915b8a 4195ed9 f915b8a 4195ed9 73fd6db 4195ed9 73fd6db f915b8a 73fd6db f915b8a 4195ed9 f915b8a 4195ed9 f915b8a 4195ed9 73fd6db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import pandas as pd
import numpy as np
from statsmodels.tsa.arima.model import ARIMA
import plotly.graph_objects as go
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from sklearn.preprocessing import MinMaxScaler
def forecast_arima(days_ahead):
df = pd.read_excel("Microsoft_stock_data.xlsx")
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values('Date')
data = df['Close'].values
model = ARIMA(data, order=(1,1,1))
fitted = model.fit()
forecast = fitted.forecast(steps=int(days_ahead))
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'].tail(100), y=data[-100:], name='Historical', line=dict(color='blue')))
future_dates = pd.date_range(start=df['Date'].iloc[-1], periods=int(days_ahead)+1)[1:]
fig.add_trace(go.Scatter(x=future_dates, y=forecast, name='ARIMA Forecast', line=dict(color='red')))
fig.update_layout(title='ARIMA Stock Price Forecast', xaxis_title='Date', yaxis_title='Price')
return fig
def forecast_lstm(days_ahead):
df = pd.read_excel("Microsoft_stock_data.xlsx")
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values('Date')
data = df['Close'].values.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data)
lookback = 60
X_train, y_train = [], []
for i in range(lookback, len(scaled_data)):
X_train.append(scaled_data[i-lookback:i, 0])
y_train.append(scaled_data[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
model = Sequential([
LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)),
Dropout(0.2),
LSTM(units=50, return_sequences=False),
Dropout(0.2),
Dense(units=25),
Dense(units=1)
])
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=0)
last_sequence = scaled_data[-lookback:]
forecast = []
for _ in range(int(days_ahead)):
prediction = model.predict(last_sequence.reshape(1, lookback, 1), verbose=0)
forecast.append(prediction[0, 0])
last_sequence = np.append(last_sequence[1:], prediction)
forecast = scaler.inverse_transform(np.array(forecast).reshape(-1, 1))
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'].tail(100), y=data[-100:, 0], name='Historical', line=dict(color='blue')))
future_dates = pd.date_range(start=df['Date'].iloc[-1], periods=int(days_ahead)+1)[1:]
fig.add_trace(go.Scatter(x=future_dates, y=forecast.flatten(), name='LSTM Forecast', line=dict(color='green')))
fig.update_layout(title='LSTM Stock Price Forecast', xaxis_title='Date', yaxis_title='Price')
return fig
def forecast_comparison(days_ahead):
df = pd.read_excel("Microsoft_stock_data.xlsx")
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values('Date')
data = df['Close'].values
arima_model = ARIMA(data, order=(1,1,1))
arima_fitted = arima_model.fit()
arima_forecast = arima_fitted.forecast(steps=int(days_ahead))
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data.reshape(-1, 1))
lookback = 60
X_train, y_train = [], []
for i in range(lookback, len(scaled_data)):
X_train.append(scaled_data[i-lookback:i, 0])
y_train.append(scaled_data[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
lstm_model = Sequential([
LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)),
Dropout(0.2),
LSTM(units=50, return_sequences=False),
Dropout(0.2),
Dense(units=25),
Dense(units=1)
])
lstm_model.compile(optimizer='adam', loss='mean_squared_error')
lstm_model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=0)
last_sequence = scaled_data[-lookback:]
lstm_forecast = []
for _ in range(int(days_ahead)):
prediction = lstm_model.predict(last_sequence.reshape(1, lookback, 1), verbose=0)
lstm_forecast.append(prediction[0, 0])
last_sequence = np.append(last_sequence[1:], prediction)
lstm_forecast = scaler.inverse_transform(np.array(lstm_forecast).reshape(-1, 1)).flatten()
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'].tail(100), y=data[-100:], name='Historical', line=dict(color='blue')))
future_dates = pd.date_range(start=df['Date'].iloc[-1], periods=int(days_ahead)+1)[1:]
fig.add_trace(go.Scatter(x=future_dates, y=arima_forecast, name='ARIMA Forecast', line=dict(color='red', dash='dash')))
fig.add_trace(go.Scatter(x=future_dates, y=lstm_forecast, name='LSTM Forecast', line=dict(color='green', dash='dot')))
fig.update_layout(title='ARIMA vs LSTM: Comparison', xaxis_title='Date', yaxis_title='Price')
return fig
with gr.Blocks() as demo:
gr.Markdown("# 📈 Time Series Forecasting: ARIMA vs LSTM")
gr.Markdown("**Microsoft Stock Price Forecasting** - Compare ARIMA and LSTM models.")
days = gr.Slider(1, 90, value=30, label="Days to Forecast")
with gr.Tabs():
with gr.Tab("ARIMA Model"):
arima_plot = gr.Plot()
arima_btn = gr.Button("Generate ARIMA Forecast")
arima_btn.click(forecast_arima, inputs=days, outputs=arima_plot)
demo.load(forecast_arima, inputs=days, outputs=arima_plot)
with gr.Tab("LSTM Model"):
lstm_plot = gr.Plot()
lstm_btn = gr.Button("Generate LSTM Forecast")
lstm_btn.click(forecast_lstm, inputs=days, outputs=lstm_plot)
with gr.Tab("Comparison"):
comparison_plot = gr.Plot()
compare_btn = gr.Button("Compare Both Models")
compare_btn.click(forecast_comparison, inputs=days, outputs=comparison_plot)
days.change(forecast_arima, inputs=days, outputs=arima_plot)
demo.launch()
|