File size: 6,308 Bytes
73fd6db
 
 
 
 
f915b8a
 
 
4195ed9
73fd6db
f915b8a
73fd6db
 
 
 
 
 
 
 
 
 
 
 
f915b8a
73fd6db
f915b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4195ed9
f915b8a
 
 
 
 
 
 
 
4195ed9
f915b8a
 
 
 
 
 
 
 
 
 
 
 
4195ed9
f915b8a
 
 
 
 
 
 
 
 
 
4195ed9
f915b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4195ed9
f915b8a
 
 
 
4195ed9
 
 
 
f915b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4195ed9
f915b8a
 
 
 
 
4195ed9
73fd6db
 
 
4195ed9
73fd6db
 
f915b8a
73fd6db
 
 
f915b8a
 
 
4195ed9
 
 
 
f915b8a
 
 
4195ed9
 
f915b8a
 
 
4195ed9
 
 
 
 
73fd6db
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import pandas as pd
import numpy as np
from statsmodels.tsa.arima.model import ARIMA
import plotly.graph_objects as go
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from sklearn.preprocessing import MinMaxScaler

def forecast_arima(days_ahead):
    df = pd.read_excel("Microsoft_stock_data.xlsx")
    df['Date'] = pd.to_datetime(df['Date'])
    df = df.sort_values('Date')
    
    data = df['Close'].values
    
    model = ARIMA(data, order=(1,1,1))
    fitted = model.fit()
    
    forecast = fitted.forecast(steps=int(days_ahead))
    
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=df['Date'].tail(100), y=data[-100:], name='Historical', line=dict(color='blue')))
    future_dates = pd.date_range(start=df['Date'].iloc[-1], periods=int(days_ahead)+1)[1:]
    fig.add_trace(go.Scatter(x=future_dates, y=forecast, name='ARIMA Forecast', line=dict(color='red')))
    fig.update_layout(title='ARIMA Stock Price Forecast', xaxis_title='Date', yaxis_title='Price')
    
    return fig

def forecast_lstm(days_ahead):
    df = pd.read_excel("Microsoft_stock_data.xlsx")
    df['Date'] = pd.to_datetime(df['Date'])
    df = df.sort_values('Date')
    
    data = df['Close'].values.reshape(-1, 1)
    
    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled_data = scaler.fit_transform(data)
    

    lookback = 60
    X_train, y_train = [], []
    for i in range(lookback, len(scaled_data)):
        X_train.append(scaled_data[i-lookback:i, 0])
        y_train.append(scaled_data[i, 0])
    
    X_train, y_train = np.array(X_train), np.array(y_train)
    X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

    model = Sequential([
        LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)),
        Dropout(0.2),
        LSTM(units=50, return_sequences=False),
        Dropout(0.2),
        Dense(units=25),
        Dense(units=1)
    ])
    
    model.compile(optimizer='adam', loss='mean_squared_error')
    model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=0)
    

    last_sequence = scaled_data[-lookback:]
    forecast = []
    
    for _ in range(int(days_ahead)):
        prediction = model.predict(last_sequence.reshape(1, lookback, 1), verbose=0)
        forecast.append(prediction[0, 0])
        last_sequence = np.append(last_sequence[1:], prediction)
    
    forecast = scaler.inverse_transform(np.array(forecast).reshape(-1, 1))
    
 
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=df['Date'].tail(100), y=data[-100:, 0], name='Historical', line=dict(color='blue')))
    future_dates = pd.date_range(start=df['Date'].iloc[-1], periods=int(days_ahead)+1)[1:]
    fig.add_trace(go.Scatter(x=future_dates, y=forecast.flatten(), name='LSTM Forecast', line=dict(color='green')))
    fig.update_layout(title='LSTM Stock Price Forecast', xaxis_title='Date', yaxis_title='Price')
    
    return fig

def forecast_comparison(days_ahead):
    df = pd.read_excel("Microsoft_stock_data.xlsx")
    df['Date'] = pd.to_datetime(df['Date'])
    df = df.sort_values('Date')
    
    data = df['Close'].values
    

    arima_model = ARIMA(data, order=(1,1,1))
    arima_fitted = arima_model.fit()
    arima_forecast = arima_fitted.forecast(steps=int(days_ahead))
    

    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled_data = scaler.fit_transform(data.reshape(-1, 1))
    
    lookback = 60
    X_train, y_train = [], []
    for i in range(lookback, len(scaled_data)):
        X_train.append(scaled_data[i-lookback:i, 0])
        y_train.append(scaled_data[i, 0])
    
    X_train, y_train = np.array(X_train), np.array(y_train)
    X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
    
    lstm_model = Sequential([
        LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)),
        Dropout(0.2),
        LSTM(units=50, return_sequences=False),
        Dropout(0.2),
        Dense(units=25),
        Dense(units=1)
    ])
    
    lstm_model.compile(optimizer='adam', loss='mean_squared_error')
    lstm_model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=0)
    
    last_sequence = scaled_data[-lookback:]
    lstm_forecast = []
    
    for _ in range(int(days_ahead)):
        prediction = lstm_model.predict(last_sequence.reshape(1, lookback, 1), verbose=0)
        lstm_forecast.append(prediction[0, 0])
        last_sequence = np.append(last_sequence[1:], prediction)
    
    lstm_forecast = scaler.inverse_transform(np.array(lstm_forecast).reshape(-1, 1)).flatten()
    

    fig = go.Figure()
    fig.add_trace(go.Scatter(x=df['Date'].tail(100), y=data[-100:], name='Historical', line=dict(color='blue')))
    future_dates = pd.date_range(start=df['Date'].iloc[-1], periods=int(days_ahead)+1)[1:]
    fig.add_trace(go.Scatter(x=future_dates, y=arima_forecast, name='ARIMA Forecast', line=dict(color='red', dash='dash')))
    fig.add_trace(go.Scatter(x=future_dates, y=lstm_forecast, name='LSTM Forecast', line=dict(color='green', dash='dot')))
    fig.update_layout(title='ARIMA vs LSTM: Comparison', xaxis_title='Date', yaxis_title='Price')
    
    return fig


with gr.Blocks() as demo:
    gr.Markdown("# 📈 Time Series Forecasting: ARIMA vs LSTM")
    gr.Markdown("**Microsoft Stock Price Forecasting** - Compare ARIMA and LSTM models.")
    
    days = gr.Slider(1, 90, value=30, label="Days to Forecast")
    
    with gr.Tabs():
        with gr.Tab("ARIMA Model"):
            arima_plot = gr.Plot()
            arima_btn = gr.Button("Generate ARIMA Forecast")
            arima_btn.click(forecast_arima, inputs=days, outputs=arima_plot)
     
            demo.load(forecast_arima, inputs=days, outputs=arima_plot)
        
        with gr.Tab("LSTM Model"):
            lstm_plot = gr.Plot()
            lstm_btn = gr.Button("Generate LSTM Forecast")
            lstm_btn.click(forecast_lstm, inputs=days, outputs=lstm_plot)
        
        with gr.Tab("Comparison"):
            comparison_plot = gr.Plot()
            compare_btn = gr.Button("Compare Both Models")
            compare_btn.click(forecast_comparison, inputs=days, outputs=comparison_plot)
    

    days.change(forecast_arima, inputs=days, outputs=arima_plot)

demo.launch()