Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gtts import gTTS | |
| from moviepy.editor import TextClip, AudioFileClip | |
| from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration | |
| import torch | |
| import tempfile | |
| import os | |
| # Initialize RAG model components | |
| tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") | |
| retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True) | |
| model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = model.to(device) | |
| def generate_response(input_text): | |
| try: | |
| input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) | |
| generated = model.generate(input_ids) | |
| response = tokenizer.batch_decode(generated, skip_special_tokens=True)[0] | |
| return response | |
| except Exception as e: | |
| print(f"Error in generate_response: {e}") | |
| return "Error generating response" | |
| def text_to_speech(text): | |
| try: | |
| tts = gTTS(text) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio_file: | |
| tts.save(temp_audio_file.name) | |
| return temp_audio_file.name | |
| except Exception as e: | |
| print(f"Error in text_to_speech: {e}") | |
| return None | |
| def text_to_video(text, audio_filename): | |
| try: | |
| text_clip = TextClip(text, fontsize=50, color='white', bg_color='black', size=(640, 480)) | |
| text_clip = text_clip.set_duration(10) | |
| audio_clip = AudioFileClip(audio_filename) | |
| video_clip = text_clip.set_audio(audio_clip) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file: | |
| video_clip.write_videofile(temp_video_file.name, codec='libx264') | |
| return temp_video_file.name | |
| except Exception as e: | |
| print(f"Error in text_to_video: {e}") | |
| return None | |
| def process_text(input_text): | |
| try: | |
| response = generate_response(input_text) | |
| audio_file = text_to_speech(response) | |
| if audio_file: | |
| video_file = text_to_video(response, audio_file) | |
| if video_file: | |
| return response, audio_file, video_file | |
| else: | |
| return response, audio_file, "Error generating video" | |
| else: | |
| return response, "Error generating audio", None | |
| except Exception as e: | |
| print(f"Error in process_text: {e}") | |
| return "Error processing text", None, None | |
| iface = gr.Interface( | |
| fn=process_text, | |
| inputs=gr.Textbox(label="Enter your text:"), | |
| outputs=[gr.Textbox(label="RAG Model Response"), gr.Audio(label="Audio"), gr.Video(label="Video")], | |
| live=True | |
| ) | |
| iface.launch() | |