Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import MarianMTModel, MarianTokenizer | |
| # Define available languages with MarianMT models | |
| LANGUAGES = { | |
| 'Spanish': 'es', | |
| 'French': 'fr', | |
| 'German': 'de', | |
| 'Chinese': 'zh', | |
| 'Hindi': 'hi', | |
| 'Arabic': 'ar', | |
| 'Japanese': 'ja', | |
| 'Russian': 'ru', | |
| 'Italian': 'it', | |
| 'Portuguese': 'pt', | |
| # Add more languages if needed | |
| } | |
| # Function to load the model based on the selected language | |
| def load_model(src_lang='en', tgt_lang='es'): | |
| model_name = f'Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}' | |
| model = MarianMTModel.from_pretrained(model_name) | |
| tokenizer = MarianTokenizer.from_pretrained(model_name) | |
| return model, tokenizer | |
| # Function to translate text | |
| def translate_text(model, tokenizer, text): | |
| inputs = tokenizer.encode(text, return_tensors='pt', truncation=True, padding=True) | |
| translated = model.generate(inputs, max_length=512, num_beams=5, early_stopping=True) | |
| translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) | |
| return translated_text | |
| # Streamlit app | |
| st.title("Language Translator") | |
| st.write("Translate English text to any language using Hugging Face models.") | |
| # Input text | |
| text = st.text_area("Enter text in English to translate:") | |
| # Language selection | |
| language = st.selectbox("Choose target language", list(LANGUAGES.keys())) | |
| if st.button("Translate"): | |
| if text: | |
| # Load model and tokenizer based on selected language | |
| tgt_lang = LANGUAGES[language] | |
| model, tokenizer = load_model('en', tgt_lang) | |
| # Perform translation | |
| translated_text = translate_text(model, tokenizer, text) | |
| # Display the translation | |
| st.write(f"**Translated text ({language}):**") | |
| st.write(translated_text) | |
| else: | |
| st.write("Please enter text to translate.") | |