Spaces:
Sleeping
Sleeping
| # app.py | |
| import os | |
| os.environ["HF_HOME"] = "/tmp/huggingface" | |
| os.makedirs("/tmp/huggingface", exist_ok=True) | |
| from fastapi import FastAPI, File, UploadFile | |
| from fastapi.responses import JSONResponse | |
| from PIL import Image | |
| import torch | |
| from transformers import AutoImageProcessor, SiglipForImageClassification | |
| from io import BytesIO | |
| app = FastAPI(title="Alphabet Sign Language Detection API") | |
| # Load model and processor once (to speed up inference) | |
| model_name = "prithivMLmods/Alphabet-Sign-Language-Detection" | |
| model = SiglipForImageClassification.from_pretrained(model_name) | |
| processor = AutoImageProcessor.from_pretrained(model_name) | |
| # Label map | |
| labels = { | |
| "0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J", | |
| "10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T", | |
| "20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z" | |
| } | |
| def read_root(): | |
| return {"message": "Welcome to the Sign Language Detection API!"} | |
| async def predict(file: UploadFile = File(...)): | |
| try: | |
| # Read image | |
| image_bytes = await file.read() | |
| image = Image.open(BytesIO(image_bytes)).convert("RGB") | |
| # Process and predict | |
| inputs = processor(images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| probs = torch.nn.functional.softmax(outputs.logits, dim=1).squeeze().tolist() | |
| # Build predictions dict | |
| predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} | |
| top_prediction = max(predictions, key=predictions.get) | |
| return JSONResponse(content={ | |
| "predicted_letter": top_prediction, | |
| "confidence": predictions[top_prediction], | |
| "all_predictions": predictions | |
| }) | |
| except Exception as e: | |
| return JSONResponse(content={"error": str(e)}, status_code=500) | |