Spaces:
Running
Running
File size: 17,385 Bytes
012178e c50779d 012178e c50779d 012178e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
# app.py — Streamlit Legal LED Summarizer with Source Mapping (HF Hub-ready)
#
# Run locally:
# streamlit run app.py
#
# On Hugging Face Spaces:
# Put this file + requirements.txt in the Space repo.
#
# It will:
# - Download your fine-tuned LED checkpoint from HF Hub
# - Run summarization
# - Map generated sentences back to source sentences via LegalBERT + FAISS
import os
import re
import textwrap
from typing import List, Tuple
import streamlit as st
import torch
import numpy as np
from transformers import (
LEDTokenizerFast,
LEDForConditionalGeneration,
AutoTokenizer,
AutoModel,
)
from huggingface_hub import hf_hub_download
# Avoid OpenMP duplicate errors in some environments
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# -----------------------------
# CONFIG
# -----------------------------
DEFAULT_LED_MODEL = "allenai/led-base-16384"
DEFAULT_MAX_INPUT_LEN = 4096
DEFAULT_BEAMS = 5
DEFAULT_MAX_TARGET_LEN = 512
# Mapping defaults
LEGALBERT_NAME = "nlpaueb/legal-bert-base-uncased"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SIM_DEFAULT = 0.85 # similarity threshold to call a sentence SUPPORTED
TOP_K_SOURCES = 3 # how many source sentences to show per generated sentence
# -----------------------------
# HF Hub checkpoint config
# -----------------------------
# 🔁 Change these to your actual model repo + filename
HF_REPO_ID = "samraatd/legal-longdoc-summarization"
HF_CHECKPOINT_FILE = "checkpoint_epoch_50.pt"
def get_checkpoint_path_from_hub() -> str:
"""
Download the fine-tuned LED checkpoint from Hugging Face Hub and
return the local file path.
"""
try:
ckpt_path = hf_hub_download(
repo_id=HF_REPO_ID,
filename=HF_CHECKPOINT_FILE,
)
return ckpt_path
except Exception as e:
st.error(f"❌ Failed to download checkpoint from Hugging Face Hub: {e}")
return ""
# -----------------------------
# Caches / Loads
# -----------------------------
@st.cache_resource(show_spinner=False)
def load_led_model_and_tokenizer(model_name=DEFAULT_LED_MODEL, device=DEVICE):
tokenizer = LEDTokenizerFast.from_pretrained(model_name)
model = LEDForConditionalGeneration.from_pretrained(model_name).to(device)
return tokenizer, model
def load_checkpoint_weights_into_led(checkpoint_path, led_model):
if not checkpoint_path or not os.path.exists(checkpoint_path):
st.warning(f"Checkpoint not found at: {checkpoint_path}")
return {}
ck = torch.load(checkpoint_path, map_location="cpu")
loaded = {}
# Try common keys first
for keyname in ("led_state", "led_state_dict", "led_model", "led"):
if keyname in ck:
try:
led_model.load_state_dict(ck[keyname], strict=False)
loaded["led"] = keyname
st.info(f"Loaded LED weights from checkpoint key: '{keyname}'")
except Exception as e:
st.warning(f"Failed to load LED weights from key '{keyname}': {e}")
# Fallback: scan for a dict-like that overlaps with model state dict
if "led" not in loaded:
for k, v in ck.items():
if isinstance(v, dict) and set(v.keys()) & set(led_model.state_dict().keys()):
try:
led_model.load_state_dict(v, strict=False)
loaded["led"] = k
st.info(f"Loaded LED weights from checkpoint top-level key: '{k}'")
break
except Exception:
pass
if "led" not in loaded:
st.warning("Could not find LED weights key in checkpoint. Using base HF LED.")
return loaded
# -----------------------------
# Input building (original)
# -----------------------------
def build_condensed_natural_from_text(
raw_text,
max_chars=20000,
facts=None,
max_facts=8,
max_chunks=12,
):
text = raw_text.strip()
if not text:
return "[NO_INPUT_TEXT_PROVIDED]"
if len(text) > max_chars:
text = text[:max_chars] + "\n\n[TRUNCATED]"
# Facts
if facts:
enumerated = "\n".join([f"{i+1}. {f}" for i, f in enumerate(facts[:max_facts])])
facts_part = f"Relevant facts:\n{enumerated}\n"
else:
sentences = [s.strip() for s in text.replace("\n", " ").split(".") if s.strip()]
top_facts = sentences[:max_facts]
enumerated = "\n".join([f"{i+1}. {s}" for i, s in enumerate(top_facts)])
facts_part = (
f"Relevant facts:\n{enumerated}\n" if enumerated else "Relevant facts:\n\n"
)
# Chunks = paragraphs
paras = [p.strip() for p in text.split("\n\n") if p.strip()]
if not paras:
paras = [" ".join(text.split(".")[:5])]
paras = paras[:max_chunks]
para_lines = []
for i, p in enumerate(paras):
head = f"- Paragraph {i+1}: "
content = p if len(p) < 1200 else (p[:1200] + " [TRUNCATED]")
para_lines.append(head + content)
chunks_part = "Important paragraphs:\n" + "\n".join(para_lines) + "\n"
instruction = "\nPlease write a concise, professional summary in fluent English (3-5 sentences)."
combined = facts_part + "\n" + chunks_part + "\n" + instruction
return combined
def find_subsequence_indices(seq, sub):
if len(sub) == 0 or len(seq) < len(sub):
return []
res = []
Ls = len(sub)
for i in range(len(seq) - Ls + 1):
if seq[i : i + Ls] == sub:
res.append(i)
return res
def build_global_attention_mask_for_headers(tokenizer, input_ids_batch, header_texts, device):
if isinstance(input_ids_batch, torch.Tensor):
input_ids = input_ids_batch.cpu().tolist()
else:
input_ids = [list(map(int, row)) for row in input_ids_batch]
B = len(input_ids)
T = max(len(r) for r in input_ids)
gmask = [[0] * T for _ in range(B)]
header_token_seqs = []
for h in header_texts:
if not h:
header_token_seqs.append([])
continue
enc = tokenizer(h, add_special_tokens=False, truncation=True, return_tensors=None)
header_token_seqs.append(enc["input_ids"])
for b, seq in enumerate(input_ids):
L = len(seq)
if L > 0:
gmask[b][0] = 1
for hseq in header_token_seqs:
if not hseq:
continue
starts = find_subsequence_indices(seq, hseq)
for s in starts:
for offs in range(len(hseq)):
idx = s + offs
if idx < T:
gmask[b][idx] = 1
return torch.tensor(gmask, dtype=torch.long, device=device)
# -----------------------------
# Source mapping helpers
# -----------------------------
SENT_SPLIT_REGEX = re.compile(
r"(?<=[.!?])\s+(?=[A-Z(\[]|\d+\.|\•|\-)"
)
def split_sentences(text: str) -> List[str]:
parts = [s.strip() for s in SENT_SPLIT_REGEX.split(text) if s and s.strip()]
return [s for s in parts if len(s) > 1]
@st.cache_resource(show_spinner=False)
def load_legalbert(name: str = LEGALBERT_NAME):
tok = AutoTokenizer.from_pretrained(name)
mdl = AutoModel.from_pretrained(name)
mdl.to(DEVICE)
mdl.eval()
return tok, mdl
def mean_pool(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
mask = attention_mask.unsqueeze(-1)
summed = (last_hidden_state * mask).sum(dim=1)
counts = mask.sum(dim=1).clamp(min=1)
return summed / counts
def embed_texts_legalbert(texts: List[str], batch_size: int = 16) -> np.ndarray:
Tok, Mdl = load_legalbert()
vecs = []
with torch.no_grad():
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
enc = Tok(
batch,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt",
).to(DEVICE)
out = Mdl(**enc).last_hidden_state
mean = (
mean_pool(out, enc["attention_mask"])
.detach()
.cpu()
.numpy()
.astype("float32")
)
vecs.append(mean)
return np.vstack(vecs) if vecs else np.zeros((0, 768), dtype="float32")
def build_faiss_index(sentences: List[str]):
try:
import faiss
except Exception:
st.error("FAISS is required. Install with `pip install faiss-cpu`.")
st.stop()
embs = embed_texts_legalbert(sentences)
faiss.normalize_L2(embs)
index = faiss.IndexFlatIP(embs.shape[1])
index.add(embs)
return index, embs.shape[1]
def map_generated_to_sources(
gen_sents: List[str],
index,
source_sents: List[str],
k: int = TOP_K_SOURCES,
):
try:
import faiss
except Exception:
st.error("FAISS is required. Install with `pip install faiss-cpu`.")
st.stop()
if not gen_sents:
return []
embs = embed_texts_legalbert(gen_sents)
faiss.normalize_L2(embs)
D, I = index.search(embs, k)
results = []
for i in range(len(gen_sents)):
triples = []
for idx, sim in zip(I[i], D[i]):
if 0 <= idx < len(source_sents):
triples.append((int(idx), float(sim), source_sents[idx]))
results.append(triples)
return results
# -----------------------------
# STREAMLIT UI
# -----------------------------
st.set_page_config(page_title="LDS - Validation-style Summarizer", layout="wide")
st.title("Legal Long Document Summarizer — with source mapping")
st.sidebar.header("Model & Checkpoint")
st.sidebar.write(f"**Base LED model**: `{DEFAULT_LED_MODEL}`")
st.sidebar.write(f"**Checkpoint (HF Hub)**: `{HF_REPO_ID}/{HF_CHECKPOINT_FILE}`")
st.sidebar.write("Device: " + DEVICE)
max_input_len = st.sidebar.number_input(
"LED max input tokens",
value=DEFAULT_MAX_INPUT_LEN,
step=512,
)
beam = st.sidebar.number_input("num_beams (generate)", value=DEFAULT_BEAMS, step=1)
max_target_len = st.sidebar.number_input(
"max_target_len",
value=DEFAULT_MAX_TARGET_LEN,
step=16,
)
st.sidebar.markdown("---")
st.sidebar.header("Input options")
use_naturalized = st.sidebar.checkbox(
"Build naturalized condensed input", value=False
)
show_condensed = st.sidebar.checkbox("Show condensed input", value=True)
st.sidebar.markdown("---")
st.sidebar.header("Citations / Mapping")
sim_threshold = st.sidebar.slider(
"Similarity threshold", 0.5, 0.99, SIM_DEFAULT, step=0.01
)
topk_sources = st.sidebar.slider(
"Top-K sources per sentence", 1, 10, TOP_K_SOURCES
)
# Main input
st.subheader("Document input")
raw_text = st.text_area(
"Paste your long document text here (or small text for testing).",
height=360,
)
if not raw_text:
st.info("Paste a document above to get started.")
# Controls
col1, col2 = st.columns([1, 3])
with col1:
if st.button("Load LED model + checkpoint from HF Hub"):
st.session_state["loaded"] = False
st.session_state["loaded_led"] = False
try:
tokenizer, led_model = load_led_model_and_tokenizer(
DEFAULT_LED_MODEL, device=DEVICE
)
st.session_state["tokenizer"] = tokenizer
st.session_state["led_model"] = led_model
st.success("✅ Loaded HF LED base model and tokenizer.")
ckpt_path = get_checkpoint_path_from_hub()
if ckpt_path:
loaded = load_checkpoint_weights_into_led(ckpt_path, led_model)
if loaded:
st.session_state["loaded_led"] = True
st.success("✅ Loaded fine-tuned checkpoint from HF Hub.")
st.session_state["loaded"] = True
except Exception as e:
st.error(f"Failed to load LED model/tokenizer or checkpoint: {e}")
with col2:
run_generate = st.button("Generate Summary")
# Generation step
if run_generate:
if "led_model" not in st.session_state:
st.error(
"Model not loaded. Click 'Load LED model + checkpoint from HF Hub' first."
)
elif not raw_text or raw_text.strip() == "":
st.error("Please paste some input text in the document input area.")
else:
tokenizer = st.session_state["tokenizer"]
led_model = st.session_state["led_model"]
# Build condensed input
if use_naturalized:
condensed = build_condensed_natural_from_text(raw_text, facts=None)
else:
condensed = raw_text.strip()
# Tokenize
enc = tokenizer(
[condensed],
truncation=True,
padding="longest",
max_length=int(max_input_len),
return_tensors="pt",
)
input_ids = enc["input_ids"].to(DEVICE)
attention_mask = enc["attention_mask"].to(DEVICE)
# Global attention mask
header_texts = ["Relevant facts:", "Important paragraphs:", "Please write"]
global_attn = build_global_attention_mask_for_headers(
tokenizer,
input_ids,
header_texts,
device=DEVICE,
)
# Generate
try:
led_model.eval()
with torch.no_grad():
gen_ids = led_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attn,
num_beams=int(beam),
max_length=int(max_target_len),
no_repeat_ngram_size=3,
length_penalty=1.2,
early_stopping=True,
)
preds = [
tokenizer.decode(
g,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
for g in gen_ids
]
pred = preds[0] if preds else ""
except Exception as e:
st.error(f"Generation failed: {e}")
pred = ""
# Show outputs
st.markdown("### Generated summary")
st.write(pred)
st.markdown("### Stats")
st.write(
{
"input_token_count": int(input_ids.size(1)),
"pred_token_count": len(tokenizer.encode(pred)),
}
)
if show_condensed:
st.markdown("### Condensed input used (truncated to 2000 chars)")
st.code(
textwrap.shorten(
condensed, width=2000, placeholder="... [TRUNCATED]"
),
language="text",
)
# -----------------------------
# Sentence-to-source mapping
# -----------------------------
if raw_text and pred:
st.markdown("---")
st.markdown("## 🔗 Sentence-to-Source Mapping")
# Split sentences
source_sents = split_sentences(raw_text)
gen_sents = split_sentences(pred)
if not source_sents:
st.info("Could not split the source into sentences.")
elif not gen_sents:
st.info("Could not split the generated summary into sentences.")
else:
# Build FAISS index over source sentences
index, dim = build_faiss_index(source_sents)
mappings = map_generated_to_sources(
gen_sents, index, source_sents, k=int(topk_sources)
)
# Render per-sentence with tags
for i, sent in enumerate(gen_sents, start=1):
hits = mappings[i - 1] if i - 1 < len(mappings) else []
strong = [
(idx, sim, s)
for (idx, sim, s) in hits
if sim >= float(sim_threshold)
]
tag = (
"[EXTRACTIVE]"
if strong and strong[0][1] >= 0.995
else ("[SUPPORTED]" if strong else "[UNSUPPORTED]")
)
with st.expander(f"{i}. {sent} {tag}"):
if strong:
for rank, (idx, sim, src) in enumerate(
strong, start=1
):
st.markdown(
f"**Source #{rank}** · line **{idx+1}** · sim **{sim:.3f}**"
)
st.write(src)
st.markdown("---")
else:
# show top-1 anyway to help debugging
if hits:
idx, sim, src = hits[0]
st.info(
f"No hit above threshold {sim_threshold:.2f}. Closest:"
)
st.markdown(
f"**Closest** · line **{idx+1}** · sim **{sim:.3f}**"
)
st.write(src)
else:
st.info("No close source sentence found.")
|