Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,20 +5,25 @@ import joblib
|
|
| 5 |
import gradio as gr
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
-
#
|
| 9 |
MODEL_REPO = "sangambhamare/TruthDetection"
|
| 10 |
MODEL_FILENAME = "model.joblib"
|
| 11 |
-
|
| 12 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
| 13 |
model = joblib.load(model_path)
|
| 14 |
|
| 15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def extract_mfcc(file_path):
|
| 17 |
y, sr = librosa.load(file_path, sr=None)
|
| 18 |
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
| 19 |
return np.mean(mfcc, axis=1)
|
| 20 |
|
| 21 |
-
# Prediction
|
| 22 |
def predict_audio(audio_file):
|
| 23 |
try:
|
| 24 |
features = extract_mfcc(audio_file).reshape(1, -1)
|
|
@@ -27,7 +32,7 @@ def predict_audio(audio_file):
|
|
| 27 |
except Exception as e:
|
| 28 |
return f"Error: {e}"
|
| 29 |
|
| 30 |
-
# Gradio
|
| 31 |
with gr.Blocks() as demo:
|
| 32 |
gr.Markdown("<h1 style='text-align: center;'>Truth Detection from Audio Stories</h1>")
|
| 33 |
gr.Markdown(
|
|
@@ -36,10 +41,17 @@ with gr.Blocks() as demo:
|
|
| 36 |
"based on MFCC features and a trained Random Forest classifier."
|
| 37 |
"</p>"
|
| 38 |
)
|
|
|
|
| 39 |
audio_input = gr.Audio(type="filepath", label="Upload WAV Audio File (30 seconds)")
|
| 40 |
output = gr.Textbox(label="Prediction")
|
| 41 |
submit_btn = gr.Button("Predict")
|
| 42 |
submit_btn.click(fn=predict_audio, inputs=audio_input, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
gr.Markdown("<p style='text-align: center; font-size: 12px; color: gray;'>Developed by Sangam Sanjay Bhamare, 2025.</p>")
|
| 44 |
|
| 45 |
if __name__ == "__main__":
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
+
# --- Load model from Hugging Face Hub ---
|
| 9 |
MODEL_REPO = "sangambhamare/TruthDetection"
|
| 10 |
MODEL_FILENAME = "model.joblib"
|
|
|
|
| 11 |
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
| 12 |
model = joblib.load(model_path)
|
| 13 |
|
| 14 |
+
# --- Load interactive report HTML (must be in same directory) ---
|
| 15 |
+
report_html = ""
|
| 16 |
+
if os.path.exists("interactive_report.html"):
|
| 17 |
+
with open("interactive_report.html", "r", encoding="utf-8") as f:
|
| 18 |
+
report_html = f.read()
|
| 19 |
+
|
| 20 |
+
# --- MFCC feature extraction ---
|
| 21 |
def extract_mfcc(file_path):
|
| 22 |
y, sr = librosa.load(file_path, sr=None)
|
| 23 |
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
| 24 |
return np.mean(mfcc, axis=1)
|
| 25 |
|
| 26 |
+
# --- Prediction function ---
|
| 27 |
def predict_audio(audio_file):
|
| 28 |
try:
|
| 29 |
features = extract_mfcc(audio_file).reshape(1, -1)
|
|
|
|
| 32 |
except Exception as e:
|
| 33 |
return f"Error: {e}"
|
| 34 |
|
| 35 |
+
# --- Gradio Interface ---
|
| 36 |
with gr.Blocks() as demo:
|
| 37 |
gr.Markdown("<h1 style='text-align: center;'>Truth Detection from Audio Stories</h1>")
|
| 38 |
gr.Markdown(
|
|
|
|
| 41 |
"based on MFCC features and a trained Random Forest classifier."
|
| 42 |
"</p>"
|
| 43 |
)
|
| 44 |
+
|
| 45 |
audio_input = gr.Audio(type="filepath", label="Upload WAV Audio File (30 seconds)")
|
| 46 |
output = gr.Textbox(label="Prediction")
|
| 47 |
submit_btn = gr.Button("Predict")
|
| 48 |
submit_btn.click(fn=predict_audio, inputs=audio_input, outputs=output)
|
| 49 |
+
|
| 50 |
+
if report_html:
|
| 51 |
+
gr.Markdown("<hr>")
|
| 52 |
+
gr.Markdown("<h3 style='text-align: center;'>Interactive Report</h3>")
|
| 53 |
+
gr.HTML(value=report_html)
|
| 54 |
+
|
| 55 |
gr.Markdown("<p style='text-align: center; font-size: 12px; color: gray;'>Developed by Sangam Sanjay Bhamare, 2025.</p>")
|
| 56 |
|
| 57 |
if __name__ == "__main__":
|