Spaces:
Sleeping
Sleeping
| """This module contains simple helper functions """ | |
| from __future__ import print_function | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import os | |
| import torch.nn.functional as F | |
| from torch.autograd import Variable | |
| def random_word(len_word, alphabet): | |
| # generate a word constructed from len_word characters where each character is randomly chosen from the alphabet. | |
| char = np.random.randint(low=0, high=len(alphabet), size=len_word) | |
| word = [alphabet[c] for c in char] | |
| return ''.join(word) | |
| def load_network(net, save_dir, epoch): | |
| """Load all the networks from the disk. | |
| Parameters: | |
| epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) | |
| """ | |
| load_filename = '%s_net_%s.pth' % (epoch, net.name) | |
| load_path = os.path.join(save_dir, load_filename) | |
| # if you are using PyTorch newer than 0.4 (e.g., built from | |
| # GitHub source), you can remove str() on self.device | |
| state_dict = torch.load(load_path) | |
| if hasattr(state_dict, '_metadata'): | |
| del state_dict._metadata | |
| net.load_state_dict(state_dict) | |
| return net | |
| def writeCache(env, cache): | |
| with env.begin(write=True) as txn: | |
| for k, v in cache.items(): | |
| if type(k) == str: | |
| k = k.encode() | |
| if type(v) == str: | |
| v = v.encode() | |
| txn.put(k, v) | |
| def loadData(v, data): | |
| with torch.no_grad(): | |
| v.resize_(data.size()).copy_(data) | |
| def multiple_replace(string, rep_dict): | |
| for key in rep_dict.keys(): | |
| string = string.replace(key, rep_dict[key]) | |
| return string | |
| def get_curr_data(data, batch_size, counter): | |
| curr_data = {} | |
| for key in data: | |
| curr_data[key] = data[key][batch_size*counter:batch_size*(counter+1)] | |
| return curr_data | |
| # Utility file to seed rngs | |
| def seed_rng(seed): | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| np.random.seed(seed) | |
| # turn tensor of classes to tensor of one hot tensors: | |
| def make_one_hot(labels, len_labels, n_classes): | |
| one_hot = torch.zeros((labels.shape[0], labels.shape[1], n_classes),dtype=torch.float32) | |
| for i in range(len(labels)): | |
| one_hot[i,np.array(range(len_labels[i])), labels[i,:len_labels[i]]-1]=1 | |
| return one_hot | |
| # Hinge Loss | |
| def loss_hinge_dis(dis_fake, dis_real, len_text_fake, len_text, mask_loss): | |
| mask_real = torch.ones(dis_real.shape).to(dis_real.device) | |
| mask_fake = torch.ones(dis_fake.shape).to(dis_fake.device) | |
| if mask_loss and len(dis_fake.shape)>2: | |
| for i in range(len(len_text)): | |
| mask_real[i, :, :, len_text[i]:] = 0 | |
| mask_fake[i, :, :, len_text_fake[i]:] = 0 | |
| loss_real = torch.sum(F.relu(1. - dis_real * mask_real))/torch.sum(mask_real) | |
| loss_fake = torch.sum(F.relu(1. + dis_fake * mask_fake))/torch.sum(mask_fake) | |
| return loss_real, loss_fake | |
| def loss_hinge_gen(dis_fake, len_text_fake, mask_loss): | |
| mask_fake = torch.ones(dis_fake.shape).to(dis_fake.device) | |
| if mask_loss and len(dis_fake.shape)>2: | |
| for i in range(len(len_text_fake)): | |
| mask_fake[i, :, :, len_text_fake[i]:] = 0 | |
| loss = -torch.sum(dis_fake*mask_fake)/torch.sum(mask_fake) | |
| return loss | |
| def loss_std(z, lengths, mask_loss): | |
| loss_std = torch.zeros(1).to(z.device) | |
| z_mean = torch.ones((z.shape[0], z.shape[1])).to(z.device) | |
| for i in range(len(lengths)): | |
| if mask_loss: | |
| if lengths[i]>1: | |
| loss_std += torch.mean(torch.std(z[i, :, :, :lengths[i]], 2)) | |
| z_mean[i,:] = torch.mean(z[i, :, :, :lengths[i]], 2).squeeze(1) | |
| else: | |
| z_mean[i, :] = z[i, :, :, 0].squeeze(1) | |
| else: | |
| loss_std += torch.mean(torch.std(z[i, :, :, :], 2)) | |
| z_mean[i,:] = torch.mean(z[i, :, :, :], 2).squeeze(1) | |
| loss_std = loss_std/z.shape[0] | |
| return loss_std, z_mean | |
| # Convenience utility to switch off requires_grad | |
| def toggle_grad(model, on_or_off): | |
| for param in model.parameters(): | |
| param.requires_grad = on_or_off | |
| # Apply modified ortho reg to a model | |
| # This function is an optimized version that directly computes the gradient, | |
| # instead of computing and then differentiating the loss. | |
| def ortho(model, strength=1e-4, blacklist=[]): | |
| with torch.no_grad(): | |
| for param in model.parameters(): | |
| # Only apply this to parameters with at least 2 axes, and not in the blacklist | |
| if len(param.shape) < 2 or any([param is item for item in blacklist]): | |
| continue | |
| w = param.view(param.shape[0], -1) | |
| grad = (2 * torch.mm(torch.mm(w, w.t()) | |
| * (1. - torch.eye(w.shape[0], device=w.device)), w)) | |
| param.grad.data += strength * grad.view(param.shape) | |
| # Default ortho reg | |
| # This function is an optimized version that directly computes the gradient, | |
| # instead of computing and then differentiating the loss. | |
| def default_ortho(model, strength=1e-4, blacklist=[]): | |
| with torch.no_grad(): | |
| for param in model.parameters(): | |
| # Only apply this to parameters with at least 2 axes & not in blacklist | |
| if len(param.shape) < 2 or param in blacklist: | |
| continue | |
| w = param.view(param.shape[0], -1) | |
| grad = (2 * torch.mm(torch.mm(w, w.t()) | |
| - torch.eye(w.shape[0], device=w.device), w)) | |
| param.grad.data += strength * grad.view(param.shape) | |
| # Convenience utility to switch off requires_grad | |
| def toggle_grad(model, on_or_off): | |
| for param in model.parameters(): | |
| param.requires_grad = on_or_off | |
| # A highly simplified convenience class for sampling from distributions | |
| # One could also use PyTorch's inbuilt distributions package. | |
| # Note that this class requires initialization to proceed as | |
| # x = Distribution(torch.randn(size)) | |
| # x.init_distribution(dist_type, **dist_kwargs) | |
| # x = x.to(device,dtype) | |
| # This is partially based on https://discuss.pytorch.org/t/subclassing-torch-tensor/23754/2 | |
| class Distribution(torch.Tensor): | |
| # Init the params of the distribution | |
| def init_distribution(self, dist_type, **kwargs): | |
| seed_rng(kwargs['seed']) | |
| self.dist_type = dist_type | |
| self.dist_kwargs = kwargs | |
| if self.dist_type == 'normal': | |
| self.mean, self.var = kwargs['mean'], kwargs['var'] | |
| elif self.dist_type == 'categorical': | |
| self.num_categories = kwargs['num_categories'] | |
| elif self.dist_type == 'poisson': | |
| self.lam = kwargs['var'] | |
| elif self.dist_type == 'gamma': | |
| self.scale = kwargs['var'] | |
| def sample_(self): | |
| if self.dist_type == 'normal': | |
| self.normal_(self.mean, self.var) | |
| elif self.dist_type == 'categorical': | |
| self.random_(0, self.num_categories) | |
| elif self.dist_type == 'poisson': | |
| type = self.type() | |
| device = self.device | |
| data = np.random.poisson(self.lam, self.size()) | |
| self.data = torch.from_numpy(data).type(type).to(device) | |
| elif self.dist_type == 'gamma': | |
| type = self.type() | |
| device = self.device | |
| data = np.random.gamma(shape=1, scale=self.scale, size=self.size()) | |
| self.data = torch.from_numpy(data).type(type).to(device) | |
| # return self.variable | |
| # Silly hack: overwrite the to() method to wrap the new object | |
| # in a distribution as well | |
| def to(self, *args, **kwargs): | |
| new_obj = Distribution(self) | |
| new_obj.init_distribution(self.dist_type, **self.dist_kwargs) | |
| new_obj.data = super().to(*args, **kwargs) | |
| return new_obj | |
| def to_device(net, gpu_ids): | |
| if len(gpu_ids) > 0: | |
| assert(torch.cuda.is_available()) | |
| net.to(gpu_ids[0]) | |
| # net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs | |
| if len(gpu_ids)>1: | |
| net = torch.nn.DataParallel(net, device_ids=gpu_ids).cuda() | |
| # net = torch.nn.DistributedDataParallel(net) | |
| return net | |
| # Convenience function to prepare a z and y vector | |
| def prepare_z_y(G_batch_size, dim_z, nclasses, device='cuda', | |
| fp16=False, z_var=1.0, z_dist='normal', seed=0): | |
| z_ = Distribution(torch.randn(G_batch_size, dim_z, requires_grad=False)) | |
| z_.init_distribution(z_dist, mean=0, var=z_var, seed=seed) | |
| z_ = z_.to(device, torch.float16 if fp16 else torch.float32) | |
| if fp16: | |
| z_ = z_.half() | |
| y_ = Distribution(torch.zeros(G_batch_size, requires_grad=False)) | |
| y_.init_distribution('categorical', num_categories=nclasses, seed=seed) | |
| y_ = y_.to(device, torch.int64) | |
| return z_, y_ | |
| def tensor2im(input_image, imtype=np.uint8): | |
| """"Converts a Tensor array into a numpy image array. | |
| Parameters: | |
| input_image (tensor) -- the input image tensor array | |
| imtype (type) -- the desired type of the converted numpy array | |
| """ | |
| if not isinstance(input_image, np.ndarray): | |
| if isinstance(input_image, torch.Tensor): # get the data from a variable | |
| image_tensor = input_image.data | |
| else: | |
| return input_image | |
| image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
| if image_numpy.shape[0] == 1: # grayscale to RGB | |
| image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
| image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
| else: # if it is a numpy array, do nothing | |
| image_numpy = input_image | |
| return image_numpy.astype(imtype) | |
| def diagnose_network(net, name='network'): | |
| """Calculate and print the mean of average absolute(gradients) | |
| Parameters: | |
| net (torch network) -- Torch network | |
| name (str) -- the name of the network | |
| """ | |
| mean = 0.0 | |
| count = 0 | |
| for param in net.parameters(): | |
| if param.grad is not None: | |
| mean += torch.mean(torch.abs(param.grad.data)) | |
| count += 1 | |
| if count > 0: | |
| mean = mean / count | |
| print(name) | |
| print(mean) | |
| def save_image(image_numpy, image_path): | |
| """Save a numpy image to the disk | |
| Parameters: | |
| image_numpy (numpy array) -- input numpy array | |
| image_path (str) -- the path of the image | |
| """ | |
| image_pil = Image.fromarray(image_numpy) | |
| image_pil.save(image_path) | |
| def print_numpy(x, val=True, shp=False): | |
| """Print the mean, min, max, median, std, and size of a numpy array | |
| Parameters: | |
| val (bool) -- if print the values of the numpy array | |
| shp (bool) -- if print the shape of the numpy array | |
| """ | |
| x = x.astype(np.float64) | |
| if shp: | |
| print('shape,', x.shape) | |
| if val: | |
| x = x.flatten() | |
| print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( | |
| np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) | |
| def mkdirs(paths): | |
| """create empty directories if they don't exist | |
| Parameters: | |
| paths (str list) -- a list of directory paths | |
| """ | |
| if isinstance(paths, list) and not isinstance(paths, str): | |
| for path in paths: | |
| mkdir(path) | |
| else: | |
| mkdir(paths) | |
| def mkdir(path): | |
| """create a single empty directory if it didn't exist | |
| Parameters: | |
| path (str) -- a single directory path | |
| """ | |
| if not os.path.exists(path): | |
| os.makedirs(path) | |