Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| from langchain_openai import ChatOpenAI | |
| from langchain_core.messages import AnyMessage, HumanMessage, AIMessage, SystemMessage | |
| from langgraph.graph import START, StateGraph | |
| from langgraph.prebuilt import ToolNode, tools_condition | |
| from langgraph.graph.message import add_messages | |
| from typing import TypedDict, Annotated | |
| from tools import ( | |
| serp_search_tool, | |
| python_execution_tool, | |
| reverse_text_tool, | |
| audio_processing_tool, | |
| video_analysis_tool, | |
| image_recognition_tool, | |
| file_type_detection_tool, | |
| read_file_tool, | |
| code_execution_tool, | |
| math_calculation_tool, | |
| wiki_search_tool, | |
| python_repl_tool, | |
| extract_text_from_image_tool, | |
| analyze_csv_file_tool, | |
| analyze_excel_file_tool, | |
| ) | |
| import re | |
| import tempfile | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # Setting up the llm | |
| llm = ChatOpenAI(model="gpt-4o", temperature=0) | |
| tools = [ | |
| serp_search_tool, | |
| wiki_search_tool, | |
| python_execution_tool, | |
| reverse_text_tool, | |
| audio_processing_tool, | |
| video_analysis_tool, | |
| image_recognition_tool, | |
| file_type_detection_tool, | |
| read_file_tool, | |
| code_execution_tool, | |
| math_calculation_tool, | |
| python_repl_tool, | |
| extract_text_from_image_tool, | |
| analyze_csv_file_tool, | |
| analyze_excel_file_tool, | |
| ] | |
| chat_with_tools = llm.bind_tools(tools) | |
| # Defining my agent | |
| class MyAgent(TypedDict): | |
| messages: Annotated[list[AnyMessage], add_messages] | |
| # ========================= | |
| # Efficient File Handling - Download with Question | |
| # ========================= | |
| def process_question_with_files(question_data: dict) -> str: | |
| """ | |
| Download file content when processing the question and include it directly. | |
| This eliminates the need for the agent to download files separately. | |
| """ | |
| question_text = question_data.get('question', '') | |
| file_name = question_data.get('file_name', '') | |
| task_id = question_data.get('task_id', '') | |
| if not file_name: | |
| return question_text | |
| print(f"📎 Downloading file for question: {file_name}") | |
| try: | |
| # Download the file content directly | |
| file_url = f"{DEFAULT_API_URL}/files/{task_id}" | |
| response = requests.get(file_url, timeout=15) | |
| response.raise_for_status() | |
| # Save file to temporary location for processing | |
| temp_dir = tempfile.gettempdir() | |
| local_file_path = os.path.join(temp_dir, file_name) | |
| with open(local_file_path, "wb") as f: | |
| f.write(response.content) | |
| # Process the file based on its type | |
| ext = file_name.lower().split('.')[-1] | |
| if ext in ['mp3', 'wav', 'm4a', 'flac', 'ogg']: | |
| result = audio_processing_tool.invoke(local_file_path) | |
| file_info = f"[Audio Transcription: {result}]" | |
| elif ext in ['png', 'jpg', 'jpeg', 'gif', 'bmp']: | |
| result = image_recognition_tool.invoke(local_file_path) | |
| file_info = f"[Image Analysis: {result}]" | |
| elif ext in ['csv', 'xls', 'xlsx']: | |
| result = read_file_tool.invoke(local_file_path) | |
| file_info = f"[Spreadsheet Content: {result}]" | |
| elif ext in ['txt', 'md', 'py', 'json']: | |
| result = read_file_tool.invoke(local_file_path) | |
| file_info = f"[File Content: {result}]" | |
| else: | |
| result = read_file_tool.invoke(local_file_path) | |
| file_info = f"[File Content: {result}]" | |
| # Clean up the temporary file | |
| try: | |
| os.remove(local_file_path) | |
| except Exception: | |
| pass | |
| return f"{question_text}\n\n{file_info}" | |
| except Exception as e: | |
| print(f"Error downloading/processing file {file_name}: {e}") | |
| return f"{question_text}\n\n[Note: Could not download or process attached file {file_name}: {str(e)}]" | |
| def extract_final_answer(text: str) -> str: | |
| # Remove common prefixes | |
| text = re.sub(r'(?i)(answer:|final answer:|the answer is:)', '', text) | |
| # Remove repeated question lines | |
| lines = [line for line in text.strip().split( | |
| '\n') if not line.strip().endswith('?')] | |
| # If the answer is a number at the end, return it | |
| match = re.search(r'\b\d+\b$', text.strip()) | |
| if match: | |
| return match.group(0) | |
| # If the answer is a comma-separated list, return it | |
| if ',' in text and len(text.split(',')) <= 10: | |
| return ','.join([x.strip() for x in text.split(',') if x.strip()]) | |
| # Otherwise, return the last non-empty line | |
| for line in reversed(lines): | |
| if line.strip(): | |
| return line.strip() | |
| return text.strip() | |
| class AgentWrapper: | |
| def __init__(self): | |
| print("AgentWrapper initialized.") | |
| def __call__(self, question_data: dict | str) -> str: | |
| if isinstance(question_data, str): | |
| question_text = question_data | |
| print( | |
| f"Agent received question (first 50 chars): {question_text[:50]}...") | |
| else: | |
| question_text = process_question_with_files(question_data) | |
| print( | |
| f"Agent received enhanced question (first 50 chars): {question_text[:50]}...") | |
| try: | |
| result = my_agent.invoke( | |
| {"messages": [HumanMessage(content=question_text)]}) | |
| last_message = result["messages"][-1] | |
| answer = last_message.content | |
| final_answer = extract_final_answer(answer) | |
| print(f"Agent returning answer: {final_answer}") | |
| return final_answer | |
| except Exception as e: | |
| print(f"Error in agent processing: {e}") | |
| return f"Error processing question: {e}" | |
| # set the main system prompt | |
| def assistant(state: MyAgent): | |
| # Add system message to instruct the agent to use the tool | |
| system_message = SystemMessage(content=""" | |
| You are a general AI assistant. I will ask you a question. Report your thoughts, and finish | |
| your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. | |
| YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of | |
| numbers and/or strings. | |
| If you are asked for a number, don’t use comma to write your number neither use units such as $ or percent | |
| sign unless specified otherwise. | |
| If you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the digits in | |
| plain text unless specified otherwise. | |
| If you are asked for a comma separated list, apply the above rules depending of whether the element to be put | |
| in the list is a number or a string. | |
| """) | |
| # Combine system message with user messages | |
| all_messages = [system_message] + state["messages"] | |
| return { | |
| "messages": [chat_with_tools.invoke(all_messages)], | |
| } | |
| # define the agent graph | |
| builder = StateGraph(MyAgent) | |
| # Define nodes: these do the work | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| # Define edges: these determine how the control flow moves | |
| builder.add_edge(START, "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| my_agent = builder.compile() | |
| # submit | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs MyAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| # Get the SPACE_ID for sending link to the code | |
| space_id = os.getenv("SPACE_ID") | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = AgentWrapper() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| file_name = item.get("file_name", "") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| # Create complete question data for the agent | |
| question_data = { | |
| "task_id": task_id, | |
| "question": question_text, | |
| "file_name": file_name | |
| } | |
| try: | |
| submitted_answer = agent(question_data) | |
| answers_payload.append( | |
| {"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append( | |
| {"Task ID": task_id, "Question": question_text, "File": file_name, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append( | |
| {"Task ID": task_id, "Question": question_text, "File": file_name, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip( | |
| ), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# MyAgent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox( | |
| label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame( | |
| label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print( | |
| f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print( | |
| f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |
| # test | |
| messages = [HumanMessage( | |
| content="Question: How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.")] | |
| response = my_agent.invoke({"messages": messages}) | |
| print("🎩 Alfred's Response:") | |
| print(response['messages'][-1].content) | |