Spaces:
Sleeping
Sleeping
adding data, app copy
Browse files- app.py +118 -0
- data/AWS.csv +18 -0
- data/Azure.csv +25 -0
- data/GCP.csv +23 -0
- data/OVH.csv +28 -0
- data/Scaleway.csv +14 -0
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
|
| 5 |
+
merged_df = pd.read_csv("merged_cloud_data.csv")
|
| 6 |
+
|
| 7 |
+
tdp_fig = px.scatter(
|
| 8 |
+
merged_df,
|
| 9 |
+
x="Total TDP (W)",
|
| 10 |
+
y="$/Hour",
|
| 11 |
+
color="provider",
|
| 12 |
+
log_x=True,
|
| 13 |
+
log_y=True,
|
| 14 |
+
trendline="ols",
|
| 15 |
+
trendline_options=dict(log_y=True, log_x=True),
|
| 16 |
+
trendline_scope="overall",
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
cost_fig = px.scatter(
|
| 21 |
+
merged_df,
|
| 22 |
+
x="GPU Total Cost",
|
| 23 |
+
y="$/Hour",
|
| 24 |
+
color="GPU Type",
|
| 25 |
+
log_y=True,
|
| 26 |
+
log_x=True,
|
| 27 |
+
trendline="ols",
|
| 28 |
+
trendline_options=dict(log_x=True, log_y=True),
|
| 29 |
+
trendline_scope="overall",
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
color_discrete_map = {"Direct": "#2ca02c", "Indirect": "#1f77b4", "None": "#d62728"}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def generate_figure(org_name):
|
| 37 |
+
org_data = data[data["Organization"] == org_name]
|
| 38 |
+
model_counts = (
|
| 39 |
+
org_data.groupby("Year")[["Model", "Environmental Transparency"]]
|
| 40 |
+
.value_counts()
|
| 41 |
+
.reset_index()
|
| 42 |
+
)
|
| 43 |
+
model_counts.columns = ["Year", "Model", "Environmental Transparency", "Count"]
|
| 44 |
+
fig = px.bar(
|
| 45 |
+
model_counts,
|
| 46 |
+
x="Year",
|
| 47 |
+
y="Count",
|
| 48 |
+
color="Environmental Transparency",
|
| 49 |
+
color_discrete_map=color_discrete_map,
|
| 50 |
+
hover_data=["Model"],
|
| 51 |
+
)
|
| 52 |
+
fig.update_layout(xaxis_type="category")
|
| 53 |
+
fig.update_xaxes(categoryorder="category ascending")
|
| 54 |
+
return fig
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
with gr.Blocks() as demo:
|
| 58 |
+
gr.Markdown("# Environmental Transparency Explorer Tool 🕵️♀️🌎")
|
| 59 |
+
gr.Markdown(
|
| 60 |
+
"## Explore the data from 'Misinformation by Omission: The Need for More Environmental Transparency in AI'"
|
| 61 |
+
)
|
| 62 |
+
with gr.Accordion("Methodology", open=False):
|
| 63 |
+
gr.Markdown(
|
| 64 |
+
'We analyzed Epoch AI\'s "Notable AI Models" dataset, which tracks information on “models that were state of the art, highly cited, \
|
| 65 |
+
or otherwise historically notable” released over time. We selected the time period starting in 2010 as this is the beginning of the modern “deep learning era” \
|
| 66 |
+
(as defined by Epoch AI), which is representative of the types of AI models currently trained and deployed, including all 754 models from 2010 \
|
| 67 |
+
to the first quarter of 2025 in our analysis. We examined the level of environmental impact transparency for each model based on key information \
|
| 68 |
+
from the Epoch AI dataset (e.g., model accessibility, training compute estimation method) as well as from individual model release content \
|
| 69 |
+
(e.g., paper, model card, announcement).'
|
| 70 |
+
)
|
| 71 |
+
with gr.Row():
|
| 72 |
+
with gr.Column():
|
| 73 |
+
gr.Markdown("### All Data")
|
| 74 |
+
counts = (
|
| 75 |
+
data.groupby("Year")[["Model", "Environmental Transparency"]]
|
| 76 |
+
.value_counts()
|
| 77 |
+
.reset_index()
|
| 78 |
+
)
|
| 79 |
+
counts.columns = ["Year", "Model", "Environmental Transparency", "Count"]
|
| 80 |
+
fig2 = px.bar(
|
| 81 |
+
counts,
|
| 82 |
+
x="Year",
|
| 83 |
+
y="Count",
|
| 84 |
+
color="Environmental Transparency",
|
| 85 |
+
color_discrete_map=color_discrete_map,
|
| 86 |
+
hover_data=["Model"],
|
| 87 |
+
)
|
| 88 |
+
fig2.update_layout(xaxis_type="category")
|
| 89 |
+
fig2.update_xaxes(categoryorder="category ascending")
|
| 90 |
+
|
| 91 |
+
plt2 = gr.Plot(fig2)
|
| 92 |
+
with gr.Row():
|
| 93 |
+
with gr.Column(scale=1):
|
| 94 |
+
org_choice = gr.Dropdown(
|
| 95 |
+
organizations,
|
| 96 |
+
value="",
|
| 97 |
+
label="Organizations",
|
| 98 |
+
info="Pick an organization to explore their environmental disclosures",
|
| 99 |
+
interactive=True,
|
| 100 |
+
)
|
| 101 |
+
gr.Markdown("The 3 transparency categories are:")
|
| 102 |
+
gr.Markdown(
|
| 103 |
+
"**Direct Disclosure**: Developers explicitly reported energy or GHG emissions, e.g., using hardware TDP, country average carbon intensity or measurements."
|
| 104 |
+
)
|
| 105 |
+
gr.Markdown(
|
| 106 |
+
"**Indirect Disclosure**: Developers provided training compute data or released their model weights, allowing external estimates of training or inference impacts."
|
| 107 |
+
)
|
| 108 |
+
gr.Markdown(
|
| 109 |
+
"**No Disclosure**: Environmental impact data was not publicly released and estimation approaches (as noted in Indirect Disclosure) were not possible."
|
| 110 |
+
)
|
| 111 |
+
with gr.Column(scale=4):
|
| 112 |
+
gr.Markdown("### Data by Organization")
|
| 113 |
+
fig = generate_figure(org_choice)
|
| 114 |
+
plt = gr.Plot(fig)
|
| 115 |
+
|
| 116 |
+
org_choice.select(generate_figure, inputs=[org_choice], outputs=[plt])
|
| 117 |
+
|
| 118 |
+
demo.launch()
|
data/AWS.csv
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Instance name,GPU Type,GPU Cost,GPU Total Cost,GPU number,GPU TDP,GPU Year,vCPU,CPU Type,CPU TDP,Total TDP (W),$/Hour,Memory
|
| 2 |
+
p6-b200.48xlarge,B200,"$50,000.00",400000,8,1000,2024,192,NVIDIA Grace CPU,666.6666667,1666.666667,113.93,2048 GiB
|
| 3 |
+
p5.4xlarge,H100,25000,25000,1,350,2022,16,AMD EPYC 7R13 Processor,75,425,6.88,256 GiB
|
| 4 |
+
p5.48xlarge,H100,25000,200000,8,2800,2022,192,AMD EPYC 7R13 Processor,900,3700,55.04,2048 GiB
|
| 5 |
+
p4d.24xlarge,A100,15000,120000,8,2400,2021,96,Intel Xeon Platinum 8275L,565.7142857,2965.714286,21.96,1152 GiB
|
| 6 |
+
p3.2xlarge,V100,"$11,000.00",11000,1,250,2018,8,Intel Xeon E5-2686 v4 (Broadwell),64.44444444,314.4444444,3.06,61 GiB
|
| 7 |
+
p3.8xlarge,V100,"$11,000.00",44000,4,1000,2018,32,Intel Xeon E5-2686 v4 (Broadwell),257.7777778,1257.777778,12.24,244 GiB
|
| 8 |
+
p3.16xlarge,V100,"$11,000.00",88000,8,2000,2018,64,Intel Xeon E5-2686 v4 (Broadwell),515.5555556,2515.555556,24.48,488 GiB
|
| 9 |
+
p2.xlarge,K80,"$4,000.00",4000,1,300,2014,4,Intel Xeon E5-2686 v4 (Broadwell),32.22222222,332.2222222,0.9,61 GiB
|
| 10 |
+
p2.8xlarge,K80,"$4,000.00",16000,4,1200,2014,32,Intel Xeon E5-2686 v4 (Broadwell),257.7777778,1457.777778,7.2,488 GiB
|
| 11 |
+
p2.16xlarge,K80,"$4,000.00",32000,8,2400,2014,64,Intel Xeon E5-2686 v4 (Broadwell),515.5555556,2915.555556,14.4,732 GiB
|
| 12 |
+
g6.xlarge,L4,"$5,000.00",5000,1,72,2023,4,AMD EPYC 7R13 Processor,18.75,90.75,0.8,16 GiB
|
| 13 |
+
g6.12xlarge,L4,"$5,000.00",20000,4,288,2023,48,AMD EPYC 7R13 Processor,225,513,4.6,192 GiB
|
| 14 |
+
g6.48xlarge,L4,"$5,000.00",40000,8,576,2023,192,AMD EPYC 7R13 Processor,900,1476,13.35,768 GiB
|
| 15 |
+
g6e.xlarge,L40S,"$2,500.00",2500,1,300,2022,4,AMD EPYC 7R13 Processor,18.75,318.75,1.86,32 GiB
|
| 16 |
+
,,,,,,,,,,,,
|
| 17 |
+
Price source: https://aws.amazon.com/ec2/pricing/on-demand/,,,,,,,,,,,,
|
| 18 |
+
GPU details: https://instances.vantage.sh/aws/ec2/,,,,,,,,,,,,
|
data/Azure.csv
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Instance,vCPU(s),CPU type,CPU TDP,RAM,GPU type,GPU Cost,GPU Total Cost,GPU number,TDP (W),GPU Year,Total TDP (W),$/Hour,,
|
| 2 |
+
NC6,6,AMD EPYC (Genoa) [x86-64],22.5,56 GiB,K80,"$4,000.00",4000,1,300,2014,322.5,0.9,https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/nc-family,
|
| 3 |
+
NC12,12,AMD EPYC (Genoa) [x86-64],45,112 GiB,K80,"$4,000.00",8000,2,600,2014,645,1.8,,
|
| 4 |
+
NC24,24,AMD EPYC (Genoa) [x86-64],90,224 GiB,K80,"$4,000.00",16000,4,1200,2014,1290,3.6,,
|
| 5 |
+
NC6s v2,6,AMD EPYC (Genoa) [x86-64],22.5,112 GiB,P100,5699,5699,1,250,2016,272.5,2.07,https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888,
|
| 6 |
+
NC12s v2,12,AMD EPYC (Genoa) [x86-64],45,224 GiB,P100,5699,11398,2,500,2016,545,4.14,,
|
| 7 |
+
NC24s v2,24,AMD EPYC (Genoa) [x86-64],90,448 GiB,P100,5699,22796,4,1000,2016,1090,8.28,,
|
| 8 |
+
NC6s v3,6,AMD EPYC (Genoa) [x86-64],22.5,112 GiB,V100,"$10,000",10000,1,300,2017,322.5,3.06,,
|
| 9 |
+
NC12s v3,12,AMD EPYC (Genoa) [x86-64],45,224 GiB,V100,"$10,000",20000,2,600,2017,645,6.12,,
|
| 10 |
+
NC24s v3,24,AMD EPYC (Genoa) [x86-64],90,448 GiB,V100,"$10,000",40000,4,1200,2017,1290,12.24,,
|
| 11 |
+
NC24rs v3,24,AMD EPYC (Genoa) [x86-64],90,448 GiB,V100,"$10,000",50000,5,1500,2017,1590,13.46,,
|
| 12 |
+
NV6,6,Intel Xeon E5-2690 v3 (Haswell) [x86-64],67.5,56 GiB,M60,"$1,000",1000,1,300,2015,367.5,1.14,https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/nv-series?tabs=sizebasic,
|
| 13 |
+
NV12,12,Intel Xeon E5-2690 v3 (Haswell) [x86-64],135,112 GiB,M60,"$1,000",2000,2,600,2015,735,2.28,,
|
| 14 |
+
NV24,24,Intel Xeon E5-2690 v3 (Haswell) [x86-64],270,224 GiB,M60,"$1,000",4000,4,1200,2015,1470,4.56,,
|
| 15 |
+
ND6s,6,Intel Xeon E5-2690 v4 ,57.85714286,112 GiB,P40,"$5,699",5699,1,250,2016,307.8571429,2.07,https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/nd-series?tabs=sizebasic,https://technical.city/en/video/Quadro-RTX-4000-vs-Tesla-P40
|
| 16 |
+
ND12s,12,Intel Xeon E5-2690 v4 ,115.7142857,224 GiB,P40,"$5,699",11398,2,500,2016,615.7142857,4.14,https://www.intel.com/content/www/us/en/products/sku/91770/intel-xeon-processor-e52690-v4-35m-cache-2-60-ghz/specifications.html,
|
| 17 |
+
ND24rs,24,Intel Xeon E5-2690 v4 ,231.4285714,448 GiB,P40,"$5,699",22796,4,1000,2016,1231.428571,9.108,,
|
| 18 |
+
NC4as T4 v3,4,AMD EPYC 7V12 (Rome),15,28 GiB,T4,"7,000.00",7000,1,70,2018,85,0.526,https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ncast4v3-series?tabs=sizebasic,https://texas.gs.shi.com/product/39168597/NVIDIA-Tesla-T4-GPU-computing-processor
|
| 19 |
+
NC8as T4 v3,8,AMD EPYC 7V12 (Rome),30,56 GiB,T4,"7,000.00",7000,1,70,2018,100,0.752,,
|
| 20 |
+
NC16as T4 v3,16,AMD EPYC 7V12 (Rome),60,110 GiB,T4,"7,000.00",7000,1,70,2018,130,1.204,,
|
| 21 |
+
NC64as T4 v3,64,AMD EPYC 7V12 (Rome),240,440 GiB,T4,"7,000.00",28000,4,280,2018,520,4.352,,
|
| 22 |
+
ND40rs v2,40,Intel Xeon E5-2690 v4 ,385.7142857,672 GiB,V100,"$11,000",88000,8,2400,2017,2785.714286,22.032,https://www.intel.com/content/www/us/en/products/sku/91770/intel-xeon-processor-e52690-v4-35m-cache-2-60-ghz/specifications.html,
|
| 23 |
+
ND96asr A100 v4,96,Intel Xeon E5-2690 v4 ,925.7142857,900 GiB,A100,"15,000",120000,8,3200,2020,4125.714286,27.197,https://www.intel.com/content/www/us/en/products/sku/91770/intel-xeon-processor-e52690-v4-35m-cache-2-60-ghz/specifications.html,
|
| 24 |
+
,,,,,,,,,,,,,,
|
| 25 |
+
Source: https://azure.microsoft.com/en-us/pricing/details/machine-learning/,,,,,,,,,,,,,,
|
data/GCP.csv
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Name,vCPU,CPU type,CPU TDP,Base Clock,Memory,GPUs,GPU Type,GPU Cost,GPU Total Cost,GPU Memory,GPU TDP,GPU Year,# Regions,Total TDP (W),$/Hour
|
| 2 |
+
a2-highgpu-1g,12,Intel Xeon Platinum 8273CL Processor,70.71428571,2.2,85,1, A100 ,10000,10000,40GB,250,2020,10,320.7142857,3.9181
|
| 3 |
+
a2-highgpu-2g,24,Intel Xeon Platinum 8273CL Processor,141.4285714,2.2,170,2, A100 ,10000,20000,40GB,500,2020,10,641.4285714,7.8362
|
| 4 |
+
a2-highgpu-4g,48,Intel Xeon Platinum 8273CL Processor,282.8571429,2.2,340,4, A100 ,10000,40000,40GB,1000,2020,10,1282.857143,15.6725
|
| 5 |
+
a2-highgpu-8g,96,Intel Xeon Platinum 8273CL Processor,565.7142857,2.2,680,8, A100,10000,80000, 40GB,2000,2020,10,2565.714286,31.345
|
| 6 |
+
a2-megagpu-16g,96,Intel Xeon Platinum 8273CL Processor,565.7142857,2.2,1360,16, A100,10000,160000, 40GB,4000,2020,4,4565.714286,57.1454
|
| 7 |
+
a2-ultragpu-1g,12,Intel Xeon Platinum 8273CL Processor,70.71428571,2.2,170,1, A100,15000,15000,80GB,300,2021,5,370.7142857,5.634
|
| 8 |
+
a2-ultragpu-2g,24,Intel Xeon Platinum 8273CL Processor,141.4285714,2.2,340,2, A100,15000,30000,80GB,600,2021,5,741.4285714,11.268
|
| 9 |
+
a2-ultragpu-4g,48,Intel Xeon Platinum 8273CL Processor,282.8571429,2.2,680,4, A100,15000,60000,80GB,1200,2021,5,1482.857143,22.536
|
| 10 |
+
a2-ultragpu-8g,96,Intel Xeon Platinum 8273CL Processor,565.7142857,2.2,1360,8, A100,15000,120000,80GB,2400,2021,5,2965.714286,45.0721
|
| 11 |
+
a3-highgpu-1g,26,Intel Xeon Platinum 8481C Processor,162.5,1.9,234,1, H100,25000,25000,80GB,350,2022,16,512.5,12.7467
|
| 12 |
+
a3-highgpu-2g,52,Intel Xeon Platinum 8481C Processor,325,1.9,468,2, H100,25000,50000,80GB,700,2022,16,1025,25.4933
|
| 13 |
+
a3-highgpu-4g,104,Intel Xeon Platinum 8481C Processor,650,1.9,936,4, H100,25000,100000,80GB,1400,2022,16,2050,50.9866
|
| 14 |
+
a3-highgpu-8g,208,Intel Xeon Platinum 8481C Processor,1300,1.9,1872,8, H100,25000,200000,80GB,2800,2022,15,4100,101.9282
|
| 15 |
+
g2-standard-12,12,Intel Xeon Platinum 8273CL Processor,70.71428571,2.2,48,1, L4,5000,5000,,72,2023,18,142.7142857,1.1535
|
| 16 |
+
g2-standard-16,16,Intel Xeon Platinum 8273CL Processor,94.28571429,2.2,64,1, L4,5000,5000,,72,2023,18,166.2857143,1.3224
|
| 17 |
+
g2-standard-24,24,Intel Xeon Platinum 8273CL Processor,141.4285714,2.2,96,2, L4,5000,10000,,144,2023,18,285.4285714,2.3071
|
| 18 |
+
g2-standard-32,32,Intel Xeon Platinum 8273CL Processor,188.5714286,2.2,128,1, L4,5000,5000,,72,2023,18,260.5714286,1.9978
|
| 19 |
+
g2-standard-4,4,Intel Xeon Platinum 8273CL Processor,23.57142857,2.2,16,1, L4,5000,5000,,72,2023,18,95.57142857,0.8158
|
| 20 |
+
g2-standard-48,48,Intel Xeon Platinum 8273CL Processor,282.8571429,2.2,192,4, L4,5000,20000,,288,2023,18,570.8571429,4.6142
|
| 21 |
+
g2-standard-8,8,Intel Xeon Platinum 8273CL Processor,47.14285714,2.2,32,1, L4,5000,5000,,72,2023,18,119.1428571,0.9847
|
| 22 |
+
g2-standard-96,96,Intel Xeon Platinum 8273CL Processor,565.7142857,2.2,384,8, L4,5000,40000,,576,2023,18,1141.714286,9.2284
|
| 23 |
+
Source: https://gcloud-compute.com/gpu.html,,,,,,,,,,,,,,,
|
data/OVH.csv
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Name,Memory,vCore,CPU Type,CPU TDP,GPU Type,GPU Cost,GPU Total Cost,GPU Number,GPU TDP,GPU Year,Storage,Total TDP (W),$/Hour,,
|
| 2 |
+
l40s-90,90 GB,15,AMD EPYC 9124 16-Core Processor,187.5,L40S,2500,2500,1,300,2022,400 GB NVMe,487.5,1.8,https://pcr.cloud-mercato.com/providers/ovh/flavors/L40S-90,https://www.techpowerup.com/gpu-specs/l40s.c4173
|
| 3 |
+
l40s-180,180 GB,30,AMD EPYC 9124 16-Core Processor,375,L40S ,2500,5000,2,600,2022,400 GB NVMe,975,3.6,https://pcr.cloud-mercato.com/providers/ovh/flavors/L40S-180,
|
| 4 |
+
l40s-360,360 GB,60,AMD EPYC 9124 16-Core Processor,750,L40S ,2500,10000,4,1200,2022,400 GB NVMe,1950,7.2,https://pcr.cloud-mercato.com/providers/ovh/flavors/L40S-360,
|
| 5 |
+
a10-45,45 GB,30,AMD EPYC 9554 64-Core Processor,375,A10 ,"8,500",8500,1,150,2021,400 GB SSD,525,1,https://pcr.cloud-mercato.com/providers/ovh/flavors/A10-45,https://texas.gs.shi.com/product/42946005/NVIDIA-A10-GPU-computing-processor
|
| 6 |
+
a10-90,90 GB,60,AMD EPYC 9554 64-Core Processor,750,A10 ,"8,500",17000,2,300,2021,400 GB SSD,1050,2,https://pcr.cloud-mercato.com/providers/ovh/flavors/A10-90,
|
| 7 |
+
a10-180,180 GB,120,AMD EPYC 9554 64-Core Processor,1500,A10 ,"8,500",34000,4,600,2021,400 GB SSD,2100,4,,
|
| 8 |
+
a100-180,180 GB,15,Intel(R) Xeon(R) Gold 6248R CPU ,128.125,A100,"15,000",15000,1,300,2021,300 GB NVMe,428.125,3.07,https://pcr.cloud-mercato.com/providers/ovh/flavors/A100-180,https://www.techpowerup.com/gpu-specs/a100-pcie-80-gb.c3821
|
| 9 |
+
a100-360,360 GB,30,Intel(R) Xeon(R) Gold 6248R CPU ,256.25,A100,"15,000",30000,2,600,2021,500 GB NVMe,856.25,6.15,,
|
| 10 |
+
a100-720,720 GB,60,Intel(R) Xeon(R) Gold 6248R CPU ,512.5,A100,"15,000",60000,4,1200,2021,500 GB NVMe,1712.5,12.29,,
|
| 11 |
+
h100-380,380 GB,30,AMD EPYC 9354 32-Core Processor,262.5,H100,"25,000",25000,1,350,2022,200 GB + 3.84 TB NVMe Passthrough,612.5,2.99,https://pcr.cloud-mercato.com/providers/ovh/flavors/H100-380,https://www.techpowerup.com/gpu-specs/h100-pcie-80-gb.c3899
|
| 12 |
+
h100-760,760 GB,60,AMD EPYC 9354 32-Core Processor,525,H100,"25,000",50000,2,700,2022,200 GB + 2 x 3.84 TB NVMe Passthrough,1225,5.98,,
|
| 13 |
+
h100-1520,1.52 TB,120,AMD EPYC 9354 32-Core Processor,1050,H100,"25,000",100000,4,1400,2022,200 GB + 4 x 3.84 TB NVMe Passthrough,2450,11.97,,
|
| 14 |
+
l4-90,90 GB,22,AMD EPYC 9454 48-Core Processor,132.9166667,L4 ,"5,000",5000,1,72,2023,400 GB NVMe,204.9166667,1,https://pcr.cloud-mercato.com/providers/ovh/flavors/L4-90,https://www.techpowerup.com/gpu-specs/l4.c4091
|
| 15 |
+
l4-180,180 GB,45,AMD EPYC 9454 48-Core Processor,271.875,L4 ,"5,000",10000,2,144,2023,400 GB NVMe,415.875,2,,
|
| 16 |
+
l4-360,360 GB,90,AMD EPYC 9454 48-Core Processor,543.75,L4 ,"5,000",20000,4,288,2023,400 GB NVMe,831.75,4,,
|
| 17 |
+
t1-45,45 GB,8,Intel(R) Xeon(R) Silver 4114 CPU ,68,V100 ,"8,000",8000,1,300,2017,400 GB NVMe,368,1.97,https://pcr.cloud-mercato.com/providers/ovh/flavors/T1-45,https://cyfuture.cloud/kb/gpu/how-much-does-the-nvidia-v100-cost
|
| 18 |
+
t1-90,90 GB,18,Intel(R) Xeon(R) Silver 4114 CPU ,153,V100 ,"8,000",16000,2,600,2017,800 GB NVMe,753,3.94,,
|
| 19 |
+
t1-180,180 GB,36,Intel(R) Xeon(R) Silver 4114 CPU ,306,V100 ,"8,000",32000,4,1200,2017,50 GB + 2 x 2 TB NVMe Passthrough,1506,7.89,,
|
| 20 |
+
t1-le-45,45 GB,8,Intel(R) Xeon(R) Silver 4214 CPU ,68,V100 ,"8,000",8000,1,300,2017,300 GB NVMe,368,0.77,,
|
| 21 |
+
t1-le-90,90 GB,16,Intel(R) Xeon(R) Silver 4214 CPU ,136,V100 ,"8,000",16000,2,600,2017,400 GB NVMe,736,1.55,,
|
| 22 |
+
t1-le-180,180 GB,32,Intel(R) Xeon(R) Silver 4214 CPU ,272,V100 ,"8,000",32000,4,1200,2017,400 GB NVMe,1472,3.1,,
|
| 23 |
+
t2-45,45 GB,15,Intel(R) Xeon(R) Gold 6226R CPU,140.625,V100S ,"11,000",11000,1,250,2019,400 GB NVMe,390.625,2.19,https://pcr.cloud-mercato.com/providers/ovh/flavors/T2-45,https://www.techpowerup.com/gpu-specs/tesla-v100s-pcie-32-gb.c3467
|
| 24 |
+
t2-90,90 GB,30,Intel(R) Xeon(R) Gold 6226R CPU,281.25,V100S ,"11,000",22000,2,500,2019,800 GB NVMe,781.25,4.38,,
|
| 25 |
+
t2-180,180 GB,60,Intel(R) Xeon(R) Gold 6226R CPU,562.5,V100S ,"11,000",44000,4,1000,2019,50 GB + 2 x 2 TB NVMe Passthrough,1562.5,8.76,,
|
| 26 |
+
t2-le-45,45 GB,15,Intel(R) Xeon(R) Gold 6226R CPU,140.625,V100S ,"11,000",11000,1,250,2019,300 GB NVMe,390.625,0.88,https://pcr.cloud-mercato.com/providers/ovh/flavors/T1-LE-90,
|
| 27 |
+
t2-le-90,90 GB,30,Intel(R) Xeon(R) Gold 6226R CPU,281.25,V100S ,"11,000",22000,2,500,2019,500 GB NVMe,781.25,1.76,,
|
| 28 |
+
t2-le-180,180 GB,60,Intel(R) Xeon(R) Gold 6226R CPU,562.5,V100S ,"11,000",44000,4,1000,2019,500 GB NVMe,1562.5,3.53,,
|
data/Scaleway.csv
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Name,vCPUs,CPU Type,CPU TDP,Type GPU,GPU Cost,GPU Total Cost,Number GPU,GPU TDP,GPU Year,RAM,Total TDP (W),$/Hour,Price/ hour (€)
|
| 2 |
+
L4-1-24G,8,AMD EPYC 7413,60,L4,5000,5000,1,72,2023,48 GB,60,0.87,0.75
|
| 3 |
+
L4-2-24G,16,AMD EPYC 7413,120,L4,5000,10000,2,144,2023,96 GB,264,1.74,1.5
|
| 4 |
+
L4-4-24G,32,AMD EPYC 7413,240,L4,5000,20000,4,288,2023,192 GB,528,3.48,3
|
| 5 |
+
L4-8-24G,64,AMD EPYC 7413,480,L4,5000,40000,8,576,2023,384 GB,1056,6.96,6
|
| 6 |
+
L40S-1-48G,8,AMD EPYC 7413,60,L40S,"$2,500.00",2500,1,300,2022,96 GB,60,1.624,1.4
|
| 7 |
+
L40S-2-48G,16,AMD EPYC 7413,120,L40S,"$2,500.00",5000,2,600,2022,192 GB,720,3.248,2.8
|
| 8 |
+
L40S-4-48G,32,AMD EPYC 7413,240,L40S,"$2,500.00",10000,4,1200,2022,384 GB,1440,6.496,5.6
|
| 9 |
+
L40S-8-48G,64,AMD EPYC 7413,480,L40S,"$2,500.00",20000,8,2400,2022,768 GB,2880,12.992,11.2
|
| 10 |
+
H100-1-80G,24,AMD Epyc Zen 4,84.375,H100,25000,25000,1,350,2022,240 GB,84.375,3.1668,2.73
|
| 11 |
+
H100-2-80G,48,AMD Epyc Zen 4,168.75,H100,25000,50000,2,700,2022,480 GB,868.75,6.3336,5.46
|
| 12 |
+
H100-SXM-2-80G,32,Xeon Platinum 8452Y,266.6666667,H100,25000,50000,2,700,2022,240 GB,966.6666667,6.9832,6.02
|
| 13 |
+
H100-SXM-4-80G,64,Xeon Platinum 8452Y,533.3333333,H100,25000,100000,4,1400,2022,480 GB,1933.333333,13.4676,11.61
|
| 14 |
+
H100-SXM-8-80G/NEW,128,Xeon Platinum 8452Y,1066.666667,H100,25000,200000,8,2800,2022,960 GB,3866.666667,26.7148,23.03
|