seanpedrickcase's picture
Sync: Changed search text tab title
d864d45
raw
history blame
31.4 kB
import os
import sys
from threading import Thread
import gradio as gr
import spaces
from PIL import Image
from tools.config import (
LOAD_PADDLE_AT_STARTUP,
MAX_NEW_TOKENS,
MAX_SPACES_GPU_RUN_TIME,
PADDLE_DET_DB_UNCLIP_RATIO,
PADDLE_FONT_PATH,
PADDLE_MODEL_PATH,
PADDLE_USE_TEXTLINE_ORIENTATION,
QUANTISE_VLM_MODELS,
REPORT_VLM_OUTPUTS_TO_GUI,
SHOW_VLM_MODEL_OPTIONS,
USE_FLASH_ATTENTION,
VLM_DEFAULT_DO_SAMPLE,
VLM_DEFAULT_MIN_P,
VLM_DEFAULT_PRESENCE_PENALTY,
VLM_DEFAULT_REPETITION_PENALTY,
VLM_DEFAULT_TEMPERATURE,
VLM_DEFAULT_TOP_K,
VLM_DEFAULT_TOP_P,
VLM_MAX_IMAGE_SIZE,
VLM_MIN_IMAGE_SIZE,
VLM_SEED,
)
from tools.helper_functions import get_system_font_path
if LOAD_PADDLE_AT_STARTUP is True:
# Set PaddleOCR environment variables BEFORE importing PaddleOCR
# This ensures fonts are configured before the package loads
# Set PaddleOCR model directory environment variable (only if specified).
if PADDLE_MODEL_PATH and PADDLE_MODEL_PATH.strip():
os.environ["PADDLEOCR_MODEL_DIR"] = PADDLE_MODEL_PATH
print(f"Setting PaddleOCR model path to: {PADDLE_MODEL_PATH}")
else:
print("Using default PaddleOCR model storage location")
# Set PaddleOCR font path to use system fonts instead of downloading simfang.ttf/PingFang-SC-Regular.ttf
# This MUST be set before importing PaddleOCR to prevent font downloads
if (
PADDLE_FONT_PATH
and PADDLE_FONT_PATH.strip()
and os.path.exists(PADDLE_FONT_PATH)
):
os.environ["PADDLE_PDX_LOCAL_FONT_FILE_PATH"] = PADDLE_FONT_PATH
print(f"Setting PaddleOCR font path to configured font: {PADDLE_FONT_PATH}")
else:
system_font_path = get_system_font_path()
if system_font_path:
os.environ["PADDLE_PDX_LOCAL_FONT_FILE_PATH"] = system_font_path
print(f"Setting PaddleOCR font path to system font: {system_font_path}")
else:
print(
"Warning: No suitable system font found. PaddleOCR may download default fonts."
)
try:
from paddleocr import PaddleOCR
print("PaddleOCR imported successfully")
paddle_kwargs = None
# Default paddle configuration if none provided
if paddle_kwargs is None:
paddle_kwargs = {
"det_db_unclip_ratio": PADDLE_DET_DB_UNCLIP_RATIO,
"use_textline_orientation": PADDLE_USE_TEXTLINE_ORIENTATION,
"use_doc_orientation_classify": False,
"use_doc_unwarping": False,
"lang": "en",
}
else:
# Enforce language if not explicitly provided
paddle_kwargs.setdefault("lang", "en")
try:
PaddleOCR(**paddle_kwargs)
except Exception as e:
# Handle DLL loading errors (common on Windows with GPU version)
if (
"WinError 127" in str(e)
or "could not be found" in str(e).lower()
or "dll" in str(e).lower()
):
print(
f"Warning: GPU initialization failed (likely missing CUDA/cuDNN dependencies): {e}"
)
print("PaddleOCR will not be available. To fix GPU issues:")
print("1. Install Visual C++ Redistributables (latest version)")
print("2. Ensure CUDA runtime libraries are in your PATH")
print(
"3. Or reinstall paddlepaddle CPU version: pip install paddlepaddle"
)
raise ImportError(
f"Error initializing PaddleOCR: {e}. Please install it using 'pip install paddleocr paddlepaddle' in your python environment and retry."
)
else:
raise e
except ImportError:
PaddleOCR = None
print(
"PaddleOCR not found. Please install it using 'pip install paddleocr paddlepaddle' in your python environment and retry."
)
# Define module-level defaults for model parameters (always available for import)
# These will be overridden inside the SHOW_VLM_MODEL_OPTIONS block if enabled
model_default_prompt = """Read all the text in the image."""
model_default_do_sample = (
VLM_DEFAULT_DO_SAMPLE if VLM_DEFAULT_DO_SAMPLE is not None else None
)
model_default_top_p = VLM_DEFAULT_TOP_P if VLM_DEFAULT_TOP_P is not None else None
model_default_min_p = VLM_DEFAULT_MIN_P if VLM_DEFAULT_MIN_P is not None else None
model_default_top_k = VLM_DEFAULT_TOP_K if VLM_DEFAULT_TOP_K is not None else None
model_default_temperature = (
VLM_DEFAULT_TEMPERATURE if VLM_DEFAULT_TEMPERATURE is not None else None
)
model_default_repetition_penalty = (
VLM_DEFAULT_REPETITION_PENALTY
if VLM_DEFAULT_REPETITION_PENALTY is not None
else None
)
model_default_presence_penalty = VLM_DEFAULT_PRESENCE_PENALTY
model_default_max_new_tokens = int(MAX_NEW_TOKENS)
model_default_seed = VLM_SEED if VLM_SEED is not None else None
if SHOW_VLM_MODEL_OPTIONS is True:
import torch
from huggingface_hub import snapshot_download
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
BitsAndBytesConfig,
Qwen2_5_VLForConditionalGeneration,
Qwen3VLForConditionalGeneration,
TextIteratorStreamer,
)
from tools.config import (
MAX_NEW_TOKENS,
MODEL_CACHE_PATH,
QUANTISE_VLM_MODELS,
SELECTED_MODEL,
USE_FLASH_ATTENTION,
VLM_DEFAULT_DO_SAMPLE,
VLM_DEFAULT_MIN_P,
VLM_DEFAULT_PRESENCE_PENALTY,
VLM_DEFAULT_REPETITION_PENALTY,
VLM_DEFAULT_TEMPERATURE,
VLM_DEFAULT_TOP_K,
VLM_DEFAULT_TOP_P,
VLM_SEED,
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
CACHE_PATH = MODEL_CACHE_PATH
if not os.path.exists(CACHE_PATH):
os.makedirs(CACHE_PATH)
# Initialize model and processor variables
processor = None
model = None
# Initialize model-specific generation parameters (will be set by specific models if needed)
# If config values are provided, use them; otherwise leave as None to use model defaults
model_default_prompt = """Read all the text in the image."""
model_default_do_sample = (
VLM_DEFAULT_DO_SAMPLE if VLM_DEFAULT_DO_SAMPLE is not None else None
)
model_default_top_p = VLM_DEFAULT_TOP_P if VLM_DEFAULT_TOP_P is not None else None
model_default_min_p = VLM_DEFAULT_MIN_P if VLM_DEFAULT_MIN_P is not None else None
model_default_top_k = VLM_DEFAULT_TOP_K if VLM_DEFAULT_TOP_K is not None else None
model_default_temperature = (
VLM_DEFAULT_TEMPERATURE if VLM_DEFAULT_TEMPERATURE is not None else None
)
model_default_repetition_penalty = (
VLM_DEFAULT_REPETITION_PENALTY
if VLM_DEFAULT_REPETITION_PENALTY is not None
else None
)
model_default_presence_penalty = VLM_DEFAULT_PRESENCE_PENALTY
model_default_max_new_tokens = int(MAX_NEW_TOKENS)
# Track which models support presence_penalty (only Qwen3-VL models currently)
model_supports_presence_penalty = False
model_default_seed = VLM_SEED if VLM_SEED is not None else None
if USE_FLASH_ATTENTION is True:
attn_implementation = "flash_attention_2"
else:
attn_implementation = "eager"
# Setup quantisation config if enabled
quantization_config = None
if QUANTISE_VLM_MODELS is True:
if not torch.cuda.is_available():
print(
"Warning: 4-bit quantisation requires CUDA, but CUDA is not available."
)
print("Falling back to loading models without quantisation")
quantization_config = None
else:
try:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
print("4-bit quantization enabled using bitsandbytes")
except Exception as e:
print(f"Warning: Could not setup bitsandbytes quantization: {e}")
print("Falling back to loading models without quantization")
quantization_config = None
print(f"Loading vision model: {SELECTED_MODEL}")
# Load only the selected model based on configuration
if SELECTED_MODEL == "Nanonets-OCR2-3B":
MODEL_ID = "nanonets/Nanonets-OCR2-3B"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
load_kwargs = {
"trust_remote_code": True,
}
if quantization_config is not None:
load_kwargs["quantization_config"] = quantization_config
load_kwargs["device_map"] = "auto"
else:
load_kwargs["torch_dtype"] = torch.float16
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID, **load_kwargs
).eval()
if quantization_config is None:
model = model.to(device)
model_default_prompt = """Extract the text from the above document as if you were reading it naturally."""
elif SELECTED_MODEL == "Dots.OCR":
# Download and patch Dots.OCR model
model_path_d_local = snapshot_download(
repo_id="rednote-hilab/dots.ocr",
local_dir=os.path.join(CACHE_PATH, "dots.ocr"),
max_workers=20,
local_dir_use_symlinks=False,
)
config_file_path = os.path.join(model_path_d_local, "configuration_dots.py")
if os.path.exists(config_file_path):
with open(config_file_path, "r") as f:
input_code = f.read()
lines = input_code.splitlines()
if "class DotsVLProcessor" in input_code and not any(
"attributes = " in line for line in lines
):
output_lines = []
for line in lines:
output_lines.append(line)
if line.strip().startswith("class DotsVLProcessor"):
output_lines.append(
' attributes = ["image_processor", "tokenizer"]'
)
with open(config_file_path, "w") as f:
f.write("\n".join(output_lines))
print("Patched configuration_dots.py successfully.")
sys.path.append(model_path_d_local)
MODEL_ID = model_path_d_local
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
load_kwargs = {
"attn_implementation": attn_implementation,
"device_map": "auto",
"trust_remote_code": True,
}
if quantization_config is not None:
load_kwargs["quantization_config"] = quantization_config
else:
load_kwargs["torch_dtype"] = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs).eval()
model_default_prompt = """Extract the text content from this image."""
model_default_max_new_tokens = MAX_NEW_TOKENS
elif SELECTED_MODEL == "Qwen3-VL-2B-Instruct":
MODEL_ID = "Qwen/Qwen3-VL-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
load_kwargs = {
"device_map": "auto",
"trust_remote_code": True,
}
if quantization_config is not None:
load_kwargs["quantization_config"] = quantization_config
else:
load_kwargs["dtype"] = "auto"
model = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID, **load_kwargs
).eval()
model_default_prompt = """Read all the text in the image."""
model_default_do_sample = False
model_default_top_p = 0.8
model_default_min_p = 0.0
model_default_top_k = 20
model_default_temperature = 0.7
model_default_repetition_penalty = 1.0
model_default_presence_penalty = 1.5
model_default_max_new_tokens = MAX_NEW_TOKENS
model_supports_presence_penalty = (
False # I found that this doesn't work when using transformers
)
elif SELECTED_MODEL == "Qwen3-VL-4B-Instruct":
MODEL_ID = "Qwen/Qwen3-VL-4B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
load_kwargs = {
"attn_implementation": attn_implementation,
"device_map": "auto",
"trust_remote_code": True,
}
if quantization_config is not None:
load_kwargs["quantization_config"] = quantization_config
else:
load_kwargs["dtype"] = "auto"
model = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID, **load_kwargs
).eval()
model_default_prompt = """Read all the text in the image."""
model_default_do_sample = False
model_default_top_p = 0.8
model_default_min_p = 0.0
model_default_top_k = 20
model_default_temperature = 0.7
model_default_repetition_penalty = 1.0
model_default_presence_penalty = 1.5
model_default_max_new_tokens = MAX_NEW_TOKENS
model_supports_presence_penalty = (
False # I found that this doesn't work when using transformers
)
elif SELECTED_MODEL == "Qwen3-VL-8B-Instruct":
MODEL_ID = "Qwen/Qwen3-VL-8B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
load_kwargs = {
"attn_implementation": attn_implementation,
"device_map": "auto",
"trust_remote_code": True,
}
if quantization_config is not None:
load_kwargs["quantization_config"] = quantization_config
else:
load_kwargs["dtype"] = "auto"
model = Qwen3VLForConditionalGeneration.from_pretrained(
MODEL_ID, **load_kwargs
).eval()
model_default_prompt = """Read all the text in the image."""
model_default_do_sample = False
model_default_top_p = 0.8
model_default_min_p = 0.0
model_default_top_k = 20
model_default_temperature = 0.7
model_default_repetition_penalty = 1.0
model_default_presence_penalty = 1.5
model_default_max_new_tokens = MAX_NEW_TOKENS
model_supports_presence_penalty = (
False # I found that this doesn't work when using transformers
)
elif SELECTED_MODEL == "Qwen3-VL-30B-A3B-Instruct":
MODEL_ID = "Qwen/Qwen3-VL-30B-A3B-Instruct"
from transformers import Qwen3VLMoeForConditionalGeneration
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
load_kwargs = {
"attn_implementation": attn_implementation,
"device_map": "auto",
"trust_remote_code": True,
}
# budget for image processor, since the compression ratio is 32 for Qwen3-VL, we can set the number of visual tokens of a single image to 256-1280
# processor.image_processor.size = {
# "longest_edge": VLM_MAX_IMAGE_SIZE,
# "shortest_edge": VLM_MIN_IMAGE_SIZE,
# }
if quantization_config is not None:
load_kwargs["quantization_config"] = quantization_config
else:
load_kwargs["dtype"] = "auto"
model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
MODEL_ID, **load_kwargs
).eval()
model_default_prompt = """Read all the text in the image."""
model_default_do_sample = False
model_default_top_p = 0.8
model_default_min_p = 0.0
model_default_top_k = 20
model_default_temperature = 0.7
model_default_repetition_penalty = 1.0
model_default_presence_penalty = 1.5
model_default_max_new_tokens = MAX_NEW_TOKENS
model_supports_presence_penalty = (
False # I found that this doesn't work when using transformers
)
elif SELECTED_MODEL == "PaddleOCR-VL":
MODEL_ID = "PaddlePaddle/PaddleOCR-VL"
load_kwargs = {
"trust_remote_code": True,
}
if quantization_config is not None:
load_kwargs["quantization_config"] = quantization_config
load_kwargs["device_map"] = "auto"
else:
load_kwargs["torch_dtype"] = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs).eval()
if quantization_config is None:
model = model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_default_prompt = """OCR:"""
model_default_max_new_tokens = MAX_NEW_TOKENS
elif SELECTED_MODEL == "None":
model = None
processor = None
else:
raise ValueError(
f"Invalid model selected: {SELECTED_MODEL}. Valid options are: Nanonets-OCR2-3B, Dots.OCR, Qwen3-VL-2B-Instruct, Qwen3-VL-4B-Instruct, Qwen3-VL-8B-Instruct, Qwen3-VL-30B-A3B-Instruct, PaddleOCR-VL"
)
# Override model defaults with user-provided config values if they are set
# Priority: user config value > model default
if VLM_DEFAULT_DO_SAMPLE is not None:
model_default_do_sample = VLM_DEFAULT_DO_SAMPLE
if VLM_DEFAULT_TOP_P is not None:
model_default_top_p = VLM_DEFAULT_TOP_P
if VLM_DEFAULT_MIN_P is not None:
model_default_min_p = VLM_DEFAULT_MIN_P
if VLM_DEFAULT_TOP_K is not None:
model_default_top_k = VLM_DEFAULT_TOP_K
if VLM_DEFAULT_TEMPERATURE is not None:
model_default_temperature = VLM_DEFAULT_TEMPERATURE
if VLM_DEFAULT_REPETITION_PENALTY is not None:
model_default_repetition_penalty = VLM_DEFAULT_REPETITION_PENALTY
if VLM_DEFAULT_PRESENCE_PENALTY is not None:
model_default_presence_penalty = VLM_DEFAULT_PRESENCE_PENALTY
if VLM_SEED is not None:
model_default_seed = VLM_SEED
print(f"Successfully loaded {SELECTED_MODEL}")
@spaces.GPU(duration=MAX_SPACES_GPU_RUN_TIME)
def extract_text_from_image_vlm(
text: str,
image: Image.Image,
max_new_tokens: int = None,
temperature: float = None,
top_p: float = None,
min_p: float = None,
top_k: int = None,
repetition_penalty: float = None,
do_sample: bool = None,
presence_penalty: float = None,
seed: int = None,
model_default_prompt: str = None,
):
"""
Generates responses using the configured vision model for image input.
Streams text to console and returns complete text only at the end.
Uses model-specific defaults if they were set during model initialization,
falling back to function argument defaults if provided, and finally to sensible
general defaults if neither are available.
Args:
text (str): The text prompt to send to the vision model. If empty and model
has a default prompt, the model default will be used.
image (Image.Image): The PIL Image to process. Must not be None.
max_new_tokens (int, optional): Maximum number of new tokens to generate.
Defaults to model-specific value (MAX_NEW_TOKENS for models with defaults) or MAX_NEW_TOKENS from config.
temperature (float, optional): Sampling temperature for generation.
Defaults to model-specific value (0.7 for Qwen3-VL models) or 0.7.
top_p (float, optional): Nucleus sampling parameter (top-p).
Defaults to model-specific value (0.8 for Qwen3-VL models) or 0.9.
min_p (float, optional): Minimum probability threshold for token sampling.
Defaults to model-specific value or 0.0.
top_k (int, optional): Top-k sampling parameter.
Defaults to model-specific value (20 for Qwen3-VL models) or 50.
repetition_penalty (float, optional): Penalty for token repetition.
Defaults to model-specific value (1.0 for Qwen3-VL models) or 1.3.
do_sample (bool, optional): If True, use sampling (do_sample=True).
If False, use sampling (do_sample=True). If None, defaults to False
(sampling) for Qwen3-VL models, or True (sampling) for other models.
presence_penalty (float, optional): Penalty for token presence.
Defaults to model-specific value (1.5 for Qwen3-VL models) or None.
Note: Not all models support this parameter.
seed (int, optional): Random seed for generation. If None, uses VLM_SEED
from config if set, otherwise no seed is set (non-deterministic).
model_default_prompt (str, optional): The default prompt to use if no text is provided.
Defaults to model-specific value (None for Dots.OCR, "Read all the text in the image." for Qwen3-VL models) or "Read all the text in the image."
Returns:
str: The complete generated text response from the model.
"""
if image is None:
return "Please upload an image."
# Determine parameter values with priority: function args > model defaults > general defaults
# Priority order: function argument (if not None) > model default > general default
# Text/prompt handling
if text and text.strip():
actual_text = text
elif model_default_prompt is not None:
actual_text = model_default_prompt
else:
actual_text = "Read all the text in the image." # General default
# max_new_tokens: function arg > model default > general default
if max_new_tokens is not None:
actual_max_new_tokens = max_new_tokens
elif model_default_max_new_tokens is not None:
actual_max_new_tokens = model_default_max_new_tokens
else:
actual_max_new_tokens = MAX_NEW_TOKENS # General default (from config)
# temperature: function arg > model default (which may include config override)
if temperature is not None:
actual_temperature = temperature
elif model_default_temperature is not None:
actual_temperature = model_default_temperature
else:
# Fallback to a sensible default if neither function arg nor model default is set
actual_temperature = 0.1
# top_p: function arg > model default (which may include config override)
if top_p is not None:
actual_top_p = top_p
elif model_default_top_p is not None:
actual_top_p = model_default_top_p
else:
# Fallback to a sensible default if neither function arg nor model default is set
actual_top_p = 0.8
# min_p: function arg > model default (which may include config override)
if min_p is not None:
actual_min_p = min_p
elif model_default_min_p is not None:
actual_min_p = model_default_min_p
else:
# Fallback to a sensible default if neither function arg nor model default is set
actual_min_p = 0.0
# top_k: function arg > model default (which may include config override)
if top_k is not None:
actual_top_k = top_k
elif model_default_top_k is not None:
actual_top_k = model_default_top_k
else:
# Fallback to a sensible default if neither function arg nor model default is set
actual_top_k = 20
# repetition_penalty: function arg > model default (which may include config override)
if repetition_penalty is not None:
actual_repetition_penalty = repetition_penalty
elif model_default_repetition_penalty is not None:
actual_repetition_penalty = model_default_repetition_penalty
else:
# Fallback to a sensible default if neither function arg nor model default is set
actual_repetition_penalty = 1.0
# do_sample: function arg > model default (which may include config override)
if do_sample is not None:
actual_do_sample = do_sample
elif model_default_do_sample is not None:
actual_do_sample = model_default_do_sample
else:
# Fallback to a sensible default if neither function arg nor model default is set
actual_do_sample = True
# presence_penalty: function arg > model default (which may include config override) > None
actual_presence_penalty = None
if presence_penalty is not None:
actual_presence_penalty = presence_penalty
elif model_default_presence_penalty is not None:
actual_presence_penalty = model_default_presence_penalty
# seed: function arg > model default (which may include config override)
actual_seed = None
if seed is not None:
actual_seed = seed
elif model_default_seed is not None:
actual_seed = model_default_seed
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": actual_text},
],
}
]
prompt_full = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
min_pixels=VLM_MIN_IMAGE_SIZE,
max_pixels=VLM_MAX_IMAGE_SIZE,
).to(device)
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True
)
# Set random seed if specified
if actual_seed is not None:
torch.manual_seed(actual_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(actual_seed)
# Build generation kwargs with resolved parameters
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": actual_max_new_tokens,
"do_sample": actual_do_sample,
"temperature": actual_temperature,
"top_p": actual_top_p,
"min_p": actual_min_p,
"top_k": actual_top_k,
"repetition_penalty": actual_repetition_penalty,
}
# Add presence_penalty if it's set and the model supports it
# Only Qwen3-VL models currently support presence_penalty
if actual_presence_penalty is not None and model_supports_presence_penalty:
generation_kwargs["presence_penalty"] = actual_presence_penalty
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
line_buffer = "" # Accumulate text for the current line
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
line_buffer += new_text
# Print to console as it streams
print(new_text, end="", flush=True)
# If we hit a newline, report the entire accumulated line to GUI
if REPORT_VLM_OUTPUTS_TO_GUI and "\n" in new_text:
# Split by newline to handle the line(s) we just completed
parts = line_buffer.split("\n")
# Report all complete lines (everything except the last part which may be incomplete)
for line in parts[:-1]:
if line.strip(): # Only report non-empty lines
gr.Info(line, duration=2)
# Keep the last part (after the last newline) for the next line
line_buffer = parts[-1] if parts else ""
# time.sleep(0.01)
# Print final newline after streaming is complete
print() # Add newline at the end
# Return the complete text only at the end
return buffer
full_page_ocr_vlm_prompt = """Spot all the text in the image at line-level, and output in JSON format as [{'bb': [x1, y1, x2, y2], 'text': 'identified text'}, ...].
IMPORTANT: Extract each horizontal line of text separately. Do NOT combine multiple lines into paragraphs. Each line that appears on a separate horizontal row in the image should be a separate entry.
Rules:
- Each line must be on a separate horizontal row in the image
- Even if a sentence is split over multiple horizontal lines, it should be split into separate entries (one per line)
- If text spans multiple horizontal lines, split it into separate entries (one per line)
- Do NOT combine lines that appear on different horizontal rows
- Each bounding box should tightly fit around a single horizontal line of text
- Empty lines should be skipped
# Only return valid JSON, no additional text or explanation."""
full_page_ocr_people_vlm_prompt = """Spot all photos of people's faces in the image, and output in JSON format as [{'bb': [x1, y1, x2, y2], 'text': '[PERSON]'}, ...].
Always return the JSON format as [{'bb': [x1, y1, x2, y2], 'text': '[PERSON]'}, ...].
Rules:
- Each photo of a person's face must be a separate entry.
- Do NOT combine multiple photos into a single entry.
- Each photo of a person's face that appears in the image should be a separate entry.
- 'text' should always be exactly '[PERSON]'.
- Do NOT include any other text or information in the JSON.
- If there are no photos of people's faces in the image, return an empty JSON array.
# Only return valid JSON, no additional text or explanation."""
full_page_ocr_signature_vlm_prompt = """Spot all signatures in the image, and output in JSON format as [{'bb': [x1, y1, x2, y2], 'text': '[SIGNATURE]'}, ...].
Always return the JSON format as [{'bb': [x1, y1, x2, y2], 'text': '[SIGNATURE]'}, ...].
Rules:
- Each signature must be a separate entry.
- Do NOT combine multiple signatures into a single entry.
- Each signature that appears in the image should be a separate entry.
- 'text' should always be exactly '[SIGNATURE]'.
- Do NOT include any other text or information in the JSON.
- If there are no signatures in the image, return an empty JSON array.
# Only return valid JSON, no additional text or explanation."""
# Test for word-level OCR with VLMs - makes some mistakes but not bad
# full_page_ocr_vlm_prompt = """Spot all the text in the image at word-level, and output in JSON format as [{'bb': [x1, y1, x2, y2], 'text': 'identified word'}, ...].
# IMPORTANT: Extract each word in the image separately. Do NOT combine words into longer fragments, sentences, or paragraphs. Each entry must correspond to a single, individual word as visually separated in the image.
# Rules:
# - Each entry should correspond to a single distinct word (not groups of words, not whole lines).
# - For each word, provide a tight bounding box [x1, y1, x2, y2] around just that word.
# - Do not merge words. Do not split words into letters. Only return one entry per word.
# - Maintain the order of words as they appear spatially from top to bottom, left to right.
# - Skip any empty or whitespace-only entries.
# - Do not include extraneous text, explanations, or formatting beyond the required JSON.
# Only return valid JSON, no additional text or explanation."""