Spaces:
Sleeping
Sleeping
File size: 16,636 Bytes
0fd441a bfbdd1d 653f79c bfbdd1d 0fd441a bfbdd1d 0fd441a bfbdd1d 0fd441a bfbdd1d 653f79c 0fd441a 653f79c 0fd441a bfbdd1d 0fd441a bfbdd1d 0fd441a bfbdd1d 653f79c bfbdd1d 653f79c bfbdd1d 653f79c bfbdd1d 653f79c 0fd441a 653f79c 0fd441a bfbdd1d 0fd441a bfbdd1d 653f79c bfbdd1d 0fd441a bfbdd1d 0fd441a 653f79c bfbdd1d 0fd441a bfbdd1d 0fd441a bfbdd1d 0fd441a bfbdd1d 0fd441a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
from pathlib import Path
import traceback
#import time
from typing import Dict, Any, Type, Optional, Union #, BaseModel
from pydantic import BaseModel
from marker.models import create_model_dict
#from marker.converters.extraction import ExtractionConverter as MarkerExtractor ## structured pydantic extraction
from marker.converters.pdf import PdfConverter as MarkerConverter ## full document convertion/extraction
from marker.config.parser import ConfigParser ## Process custom configuration
from marker.services.openai import OpenAIService as MarkerOpenAIService
#from sympy import Union
#from llm.hf_client import HFChatClient
from llm.openai_client import OpenAIChatClient
from file_handler.file_utils import collect_pdf_paths, collect_html_paths, collect_markdown_paths, create_outputdir
from utils.lib_loader import load_library
from utils.logger import get_logger
logger = get_logger(__name__)
# create/load models. Called to curtail reloading models at each instance
def load_models():
""" Creates Marker's models dict. Initiate download of models """
return create_model_dict()
# Full document converter
class DocumentConverter:
"""
Business logic wrapper using Marker OpenAI LLM Services to
convert documents (PDF, HTML files) into markdowns + assets.
"""
def __init__(self,
#provider: str,
model_id: str,
#base_url: str,
hf_provider: str,
#endpoint_url: str,
#backend_choice: str,
#system_message: str,
#max_tokens: int,
temperature: float,
top_p: float,
#stream: bool,
api_token: str,
openai_base_url: str = "https://router.huggingface.co/v1",
openai_image_format: Optional[str] = "webp",
max_workers: Optional[str] =1, #4, for config_dict["pdftext_workers"]
max_retries: Optional[int] = 2,
output_format: str = "markdown",
output_dir: Optional[Union[str, Path]] = "output_dir",
use_llm: Optional[bool] = None, #bool = False, #Optional[bool] = False, #True,
page_range: Optional[str] = None, #str = None #Optional[str] = None,
):
#self.converter = None #MarkerConverter
self.model_id = model_id #"model_name"
self.openai_api_key = api_token ## to replace dependency on self.client.openai_api_key
self.openai_base_url = openai_base_url #, #self.base_url,
self.temperature = temperature #, self.client.temperature,
self.top_p = top_p # self.client.top_p,
self.llm_service = MarkerOpenAIService
self.openai_image_format = openai_image_format #"png" #better compatibility
self.max_workers = max_workers ## pass to config_dict["pdftext_workers"]
self.max_retries = max_retries ## pass to __call__
self.output_dir = output_dir ## "output_dir": settings.DEBUG_DATA_FOLDER if debug else output_dir,
self.use_llm = use_llm if use_llm else False #use_llm[0] if isinstance(use_llm, tuple) else use_llm, #False, #True,
#self.page_range = page_range[0] if isinstance(page_range, tuple) else page_range ##SMY: iterating twice because self.page casting as hint type tuple!
self.page_range = page_range if page_range else None
# self.page_range = page_range[0] if isinstance(page_range, tuple) else page_range if isinstance(page_range, str) else None, ##Example: "0,4-8,16" ##Marker parses as List[int] #]debug #len(pdf_file)
'''
if isinstance(page_range, tuple | str):
self.page_range = page_range[0] if isinstance(page_range, tuple) else page_range
else:
self.page_range = None
'''
# 0) Instantiate the LLM Client (OPENAIChatClient): Get a provider‐agnostic chat function
##SMY: #future. Plan to integrate into Marker: uses its own LLM services (clients). As at 1.9.2, there's no huggingface client service.
try:
self.client = OpenAIChatClient(
model_id=model_id,
hf_provider=hf_provider,
#base_url=base_url,
api_token=api_token,
temperature=temperature,
top_p=top_p,
)
logger.log(level=20, msg="✔️ OpenAIChatClient instantiated:", extra={"model_id": self.client.model_id, "chatclient": str(self.client)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error initialising OpenAIChatClient: {exc}\n{tb}")
raise RuntimeError(f"✗ Error initialising OpenAIChatClient: {exc}\n{tb}") #.with_traceback(tb)
# 1) # Define the custom configuration for the Hugging Face LLM.
# Use typing.Dict and typing.Any for flexible dictionary type hints
try:
self.config_dict: Dict[str, Any] = self.get_config_dict(model_id=model_id, llm_service=str(self.llm_service), output_format=output_format)
#self.config_dict.pop("page_range") if self.config_dict.get("page_range")[0] is None else None ##SMY: execute if page_range is none. `else None` ensures valid syntactic expression
##SMY: if falsely empty tuple () or None, pop the "page_range" key-value pair, else do nothing if truthy tuple value (i.e. keep as-is)
self.config_dict.pop("page_range", None) if not self.config_dict.get("page_range") else None
self.config_dict.pop("use_llm", None) if not self.config_dict.get("use_llm") or self.config_dict.get("use_llm") is False or self.config_dict.get("use_llm") == 'False' else None
logger.log(level=20, msg="✔️ config_dict custom configured:", extra={"service": "openai"}) #, "config": str(self.config_dict)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error configuring custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"✗ Error configuring custom config_dict: {exc}\n{tb}") #.with_traceback(tb)
# 2) Use the Marker's ConfigParser to process configuration.
# The `ConfigParser` class is explicitly imported and used as the type hint.
try:
config_parser: ConfigParser = ConfigParser(self.config_dict)
logger.log(level=20, msg="✔️ parsed/processed custom config_dict:", extra={"config": str(config_parser)}) #.config_dict)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error parsing/processing custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"✗ Error parsing/processing custom config_dict: {exc}\n{tb}") #.with_traceback(tb)
# 3) Create the artifact dictionary and retrieve the LLM service. ##SMY: disused
try:
##self.artifact_dict: Dict[str, Any] = self.get_create_model_dict ##SMY: Might have to eliminate function afterall
#self.artifact_dict: Dict[str, Type[BaseModel]] = create_model_dict() ##SMY: BaseModel for Any??
self.artifact_dict = {} ##dummy
##logger.log(level=20, msg="✔️ Create artifact_dict and llm_service retrieved:", extra={"llm_service": self.llm_service})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error creating artifact_dict or retrieving LLM service: {exc}\n{tb}")
raise RuntimeError(f"✗ Error creating artifact_dict or retrieving LLM service: {exc}\n{tb}") #.with_traceback(tb)
# 4) Load models if not already loaded in reload mode
from globals import config_load_models
try:
if not config_load_models.model_dict or 'model_dict' not in globals():
model_dict = load_models()
'''if 'model_dict' not in globals():
#model_dict = self.load_models()
model_dict = load_models()'''
else: model_dict = config_load_models.model_dict
except OSError as exc_ose:
tb = traceback.format_exc() #exc.__traceback__
logger.warning(f"⚠️ OSError: the paging file is too small (to complete reload): {exc_ose}\n{tb}")
pass
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error loading models (reload): {exc}\n{tb}")
raise RuntimeError(f"✗ Error loading models (reload): {exc}\n{tb}") #.with_traceback(tb)
# 5) Instantiate Marker's MarkerConverter (PdfConverter) with config managed by config_parser
try: # Assign llm_service if api_token. ##SMY: split and slicing ##Gets the string value
llm_service_str = None if api_token == '' or api_token is None or self.use_llm is False else str(self.llm_service).split("'")[1] #
# sets api_key required by Marker ## to handle Marker's assertion test on OpenAI
#os.environ["OPENAI_API_KEY"] = api_token if api_token !='' or api_token is not None else self.openai_api_key ##SMY: looks lame
os.environ["OPENAI_API_KEY"] = api_token if api_token and api_token != '' else os.getenv("OPENAI_API_KEY") or os.getenv("GEMINI_API_KEY") or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
#logger.log(level=20, msg="self.converter: instantiating MarkerConverter:", extra={"llm_service_str": llm_service_str, "api_token": api_token}) ##debug
config_dict = config_parser.generate_config_dict()
#config_dict["pdftext_worker"] = self.max_workers #1 ##SMY: move to get_config_dicts()
#self.converter: MarkerConverter = MarkerConverter(
self.converter = MarkerConverter(
##artifact_dict=self.artifact_dict,
#artifact_dict=create_model_dict(),
artifact_dict=model_dict if model_dict else create_model_dict(),
config=config_dict,
#config=config_parser.generate_config_dict(),
#llm_service=self.llm_service ##SMY expecting str but self.llm_service, is service object marker.services of type BaseServices
llm_service=llm_service_str, ##resolve
)
logger.log(level=20, msg="✔️ MarkerConverter instantiated successfully:", extra={"converter.config": str(self.converter.config.get("openai_base_url")), "use_llm":self.converter.use_llm})
#return self.converter ##SMY: to query why did I comment out?. Bingo: "__init__() should return None, not 'PdfConverter'"
except Exception as exc:
tb = traceback.format_exc
logger.exception(f"✗ Error initialising MarkerExtractor: {exc}\n{tb}")
raise RuntimeError(f"✗ Error initialising MarkerExtractor: {exc}\n{tb}")
# Define the custom configuration for HF LLM.
def get_config_dict(self, model_id: str, llm_service=MarkerOpenAIService, output_format: Optional[str] = "markdown" ) -> Dict[str, Any]:
""" Define the custom configuration for the Hugging Face LLM. """
try:
## Enable higher quality processing with LLMs. ## See MarkerOpenAIService,
# llm_service disused here
##llm_service = llm_service.removeprefix("<class '").removesuffix("'>") # e.g <class 'marker.services.openai.OpenAIService'>
#llm_service = str(llm_service).split("'")[1] ## SMY: split and slicing
self.use_llm = self.use_llm[0] if isinstance(self.use_llm, tuple) else self.use_llm
self.page_range = self.page_range[0] if isinstance(self.page_range, tuple) else self.page_range #if isinstance(self.page_range, str) else None, ##SMY: passing as hint type tuple!
config_dict = {
"output_format" : output_format, #"markdown",
"openai_model" : self.model_id, #self.client.model_id, #"model_name"
"openai_api_key" : self.client.openai_api_key, #self.client.openai_api_key, #self.api_token,
"openai_base_url": self.openai_base_url, #self.client.base_url, #self.base_url,
"temperature" : self.temperature, #self.client.temperature,
"top_p" : self.top_p, #self.client.top_p,
"openai_image_format": self.openai_image_format, #"webp", #"png" #better compatibility
"pdftext_workers": self.max_workers, ## number of workers to use for pdftext."
"max_retries" : self.max_retries, #3, ## pass to __call__
"output_dir" : self.output_dir,
"use_llm" : self.use_llm, #False, #True,
"page_range" : self.page_range, ##debug #len(pdf_file)
}
return config_dict
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error configuring custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"✗ Error configuring custom config_dict: {exc}\n{tb}") #").with_traceback(tb)
#raise
''' # create/load models. Called to curtail reloading models at each instance
def load_models():
return create_model_dict()'''
##SMY: flagged for deprecation
##SMY: marker prefer default artifact dictionary (marker.models.create_model_dict) instead of overridding
#def get_extraction_converter(self, chat_fn):
def get_create_model_dict(self):
"""
Wraps the LLM chat_fn into marker’s artifact_dict
and returns an ExtractionConverter for PDFs & HTML.
"""
return create_model_dict()
#artifact_dict = create_model_dict(inhouse_chat_model=chat_fn)
#return artifact_dict
## SMY: Kept for future implementation (and historic reasoning). Keeping the classes separate to avoid confusion with the original implementation
'''
class DocumentExtractor:
"""
Business logic wrapper using HFChatClient and Marker to
convert documents (PDF, HTML files) into markdowns + assets
Wrapper around the Marker extraction converter for PDFs & HTML.
"""
def __init__(self,
provider: str,
model_id: str,
hf_provider: str,
endpoint_url: str,
backend_choice: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
stream: bool,
api_token: str,
):
# 1) Instantiate the LLM Client (HFChatClient): Get a provider‐agnostic chat function
try:
self.client = HFChatClient(
provider=provider,
model_id=model_id,
hf_provider=hf_provider,
endpoint_url=endpoint_url,
backend_choice=backend_choice, #choices=["model-id", "provider", "endpoint"]
system_message=system_message,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=stream,
api_token=api_token,
)
logger.log(level=20, msg="✔️ HFChatClient instantiated:", extra={"model_id": model_id, "chatclient": str(self.client)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error initialising HFChatClient: {exc}")
raise RuntimeError(f"✗ Error initialising HFChatClient: {exc}").with_traceback(tb)
#raise
# 2) Build Marker's artifact dict using the client's chat method
self.artifact_dict = self.get_extraction_converter(self.client)
# 3) Instantiate Marker's ExtractionConverter (ExtractionConverter)
try:
self.extractor = MarkerExtractor(artifact_dict=self.artifact_dict)
except Exception as exc:
logger.exception(f"✗ Error initialising MarkerExtractor: {exc}")
raise RuntimeError(f"✗ Error initialising MarkerExtractor: {exc}")
##SMY: marker prefer default artifact dictionary (marker.models.create_model_dict) instead of overridding
def get_extraction_converter(self, chat_fn):
"""
Wraps the LLM chat_fn into marker’s artifact_dict
and returns an ExtractionConverter for PDFs & HTML.
"""
artifact_dict = create_model_dict(inhouse_chat_model=chat_fn)
return artifact_dict
'''
|