File size: 52,460 Bytes
0fd441a
 
42d6e84
 
0fd441a
 
 
 
 
42d6e84
 
 
0fd441a
 
 
962ef72
42d6e84
 
 
0fd441a
 
962ef72
0fd441a
 
fd50213
 
0fd441a
42d6e84
0fd441a
 
 
 
 
 
 
fd50213
0fd441a
bfbdd1d
 
 
 
653f79c
bfbdd1d
653f79c
 
 
 
 
bfbdd1d
 
 
 
8001ea3
 
 
 
 
 
 
 
 
 
653f79c
8001ea3
0fd441a
bfbdd1d
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
8001ea3
0fd441a
 
 
 
 
 
 
 
 
 
962ef72
 
b5547bd
42d6e84
962ef72
0fd441a
 
 
 
 
 
 
8f9785a
42d6e84
 
8f9785a
8001ea3
b5547bd
331205c
d82ee51
8001ea3
 
 
8f9785a
8001ea3
 
 
653f79c
42d6e84
 
653f79c
42d6e84
8001ea3
42d6e84
653f79c
42d6e84
8001ea3
 
 
 
42d6e84
 
 
0fd441a
 
 
 
 
 
 
962ef72
42d6e84
0fd441a
42d6e84
0fd441a
a99e5f8
 
 
 
 
 
 
 
 
 
42d6e84
 
0fd441a
42d6e84
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d6e84
0fd441a
42d6e84
 
 
 
0fd441a
 
 
 
 
42d6e84
 
8001ea3
 
 
42d6e84
8001ea3
0fd441a
 
 
 
 
 
 
 
42d6e84
 
0fd441a
42d6e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd441a
962ef72
0fd441a
 
42d6e84
 
 
 
0fd441a
962ef72
 
 
 
 
 
 
 
0fd441a
962ef72
 
 
 
 
 
 
 
42d6e84
962ef72
 
42d6e84
962ef72
 
 
 
 
42d6e84
 
0fd441a
 
 
 
 
 
42d6e84
0fd441a
 
 
 
 
 
 
 
 
962ef72
 
42d6e84
653f79c
962ef72
 
42d6e84
 
 
962ef72
 
 
 
 
 
42d6e84
962ef72
 
 
0fd441a
42d6e84
962ef72
 
0fd441a
 
 
 
 
 
 
962ef72
 
42d6e84
962ef72
0fd441a
653f79c
42d6e84
653f79c
b5547bd
653f79c
962ef72
0fd441a
 
 
 
42d6e84
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df8835
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df8835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ef72
0fd441a
 
 
 
 
 
 
962ef72
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ef72
0fd441a
 
 
 
 
 
962ef72
0fd441a
 
 
962ef72
0fd441a
 
 
 
 
 
 
962ef72
0fd441a
 
 
 
 
 
 
962ef72
0fd441a
 
 
 
 
 
962ef72
0fd441a
 
 
 
 
 
962ef72
0fd441a
962ef72
 
 
 
 
 
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df8835
0fd441a
6766707
b5547bd
 
 
 
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962ef72
8001ea3
962ef72
 
 
 
 
 
0fd441a
962ef72
 
0fd441a
 
962ef72
0fd441a
 
 
 
962ef72
0fd441a
8001ea3
 
 
 
 
 
 
 
 
 
 
 
0fd441a
8001ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5547bd
8001ea3
b5547bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8001ea3
 
 
 
 
 
 
 
 
 
 
 
 
b5547bd
 
8001ea3
 
 
 
 
 
 
 
 
 
 
 
 
b5547bd
8001ea3
 
b5547bd
 
 
 
 
 
 
 
 
 
8001ea3
b5547bd
 
 
 
 
8001ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8001ea3
0fd441a
 
 
 
 
 
 
 
 
 
8001ea3
0fd441a
 
 
 
 
 
 
 
 
 
 
962ef72
0fd441a
 
 
 
962ef72
 
 
0fd441a
 
 
 
 
 
 
 
 
 
 
 
962ef72
0fd441a
962ef72
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
962ef72
0fd441a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
# ui/gradio_ui.py
import gradio as gr
from concurrent.futures import ProcessPoolExecutor, as_completed
import asyncio

from pathlib import Path, WindowsPath
from typing import Optional, Union #, Dict, List, Any, Tuple

from huggingface_hub import get_token
from numpy import append, iterable

#import file_handler
import file_handler.file_utils
from utils.config import TITLE, DESCRIPTION, DESCRIPTION_PDF_HTML, DESCRIPTION_PDF, DESCRIPTION_HTML, DESCRIPTION_MD
from utils.utils import is_dict, is_list_of_dicts
from file_handler.file_utils import zip_processed_files, process_dicts_data, collect_pdf_paths, collect_html_paths, collect_markdown_paths, create_outputdir  ## should move to handling file
from file_handler.file_utils import find_file
from utils.get_config import get_config_value

#from llm.hf_client import HFChatClient  ## SMY: unused. See converters.extraction_converter
from llm.provider_validator import is_valid_provider, suggest_providers
from llm.llm_login import is_loggedin_huggingface, login_huggingface
from converters.extraction_converter import DocumentConverter as docconverter  #DocumentExtractor #as docextractor
from converters.pdf_to_md import PdfToMarkdownConverter, init_worker
#from converters.md_to_pdf import MarkdownToPdfConverter
#from converters.html_to_md import HtmlToMarkdownConverter  ##SMY: PENDING: implementation

import traceback  ## Extract, format and print information about Python stack traces.
from utils.logger import get_logger

logger = get_logger(__name__)   ##NB: setup_logging()  ## set logging

# Instantiate converters class once – they are stateless
pdf2md_converter = PdfToMarkdownConverter()
#html2md_converter = HtmlToMarkdownConverter()
#md2pdf_converter = MarkdownToPdfConverter()

    
# User eXperience: Load Marker models ahead of time if not already loaded in reload mode
## SMY: 29Sept2025 - Came across https://github.com/xiaoyao9184/docker-marker/tree/master/gradio
from converters.extraction_converter import load_models
from globals import config_load_models
try:
    if not config_load_models.model_dict:
        config_load_models.model_dict = load_models()
    '''if 'model_dict' not in globals():
        global model_dict
        model_dict = load_models()'''
except Exception as exc:
    #tb = traceback.format_exc()   #exc.__traceback__
    logger.exception(f"βœ— Error loading models (reload): {exc}")  #\n{tb}")
    raise RuntimeError(f"βœ— Error loading models (reload): {exc}")  #\n{tb}") 

def get_login_token( api_token_arg, oauth_token: gr.OAuthToken | None=None,):
    """ Use user's supplied token or Get token from logged-in users, else from token stored on the  machine. Return token"""
    #oauth_token = get_token() if oauth_token is not None else api_token_arg
    if api_token_arg != '':  # or not None:  #| None:
        oauth_token = api_token_arg
    elif oauth_token:
        oauth_token = oauth_token 
    else: get_token()
    
    return oauth_token.token if oauth_token else ''  ##token value or empty string

# pool executor to convert files called by Gradio
##SMY: TODO: future: refactor to gradio_process.py and 
## pull options to cli-options{"output_format":, "output_dir_string":, "use_llm":, "page_range":, "force_ocr":, "debug":, "strip_existing_ocr":, "disable_ocr_math""}
def convert_batch(
    pdf_files, #: list[str],
    pdf_files_count: int,
    provider: str,
    model_id: str,
    #base_url: str
    hf_provider: str,
    endpoint: str,
    backend_choice: str,
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    stream: bool,
    api_token_gr: str,
    #max_workers: int,
    #max_retries: int,
    openai_base_url: str = "https://router.huggingface.co/v1",
    openai_image_format: Optional[str] = "webp",
    max_workers: Optional[int] = 4,
    max_retries: Optional[int] = 2,
    output_format: str = "markdown",
    #output_dir: Optional[Union[str, Path]] = "output_dir",
    output_dir_string: str = "output_dir_default",
    use_llm: bool = False,   #Optional[bool] = False,  #True,
    page_range: str = None,  #Optional[str] = None,
    tz_hours: str = None,
    oauth_token: gr.OAuthToken | None=None,
    progress: gr.Progress = gr.Progress(),  #Progress tracker to keep tab on pool queue executor
    ): #-> str:
    """
    Handles the conversion process using multiprocessing.
    Spins up a pool and converts all uploaded files in parallel.
    Aggregates per-file logs into one string.
    Receives Gradio component values, starting with the list of uploaded file paths
    """

    # login: Update the Gradio UI to improve user-friendly eXperience - commencing
    #yield gr.update(interactive=False), f"Commencing Processing ... Getting login", {"process": "Commencing Processing"}, f"dummy_log.log"
    #progress((0,16), f"Commencing Processing ...")
    
    # get token from logged-in user: 
    api_token = get_login_token(api_token_arg=api_token_gr, oauth_token=oauth_token)
    ##SMY: Strictly debug. Must not be live
    #logger.log(level=30, msg="Commencing: get_login_token", extra={"api_token]": api_token, "api_token_gr": api_token_gr})

    try:
        ##SMY: might deprecate. To replace with oauth login from Gradio ui or integrate cleanly.
        #login_huggingface(api_token)  ## attempt login if not already logged in. NB: HF CLI login prompt would not display in Process Worker.
        
        if is_loggedin_huggingface() and (api_token is None or api_token == ""):
            api_token = get_token()   ##SMY: might be redundant
        
        elif is_loggedin_huggingface() is False and api_token:
            login_huggingface(api_token)
            # login: Update the Gradio UI to improve user-friendly eXperience
            #yield gr.update(interactive=False), f"login to HF: Processing files...", {"process": "Processing files"}, f"dummy_log.log"
        else:
            pass
            # login: Update the Gradio UI to improve user-friendly eXperience
            #yield gr.update(interactive=False), f"Not logged in to HF: Processing files...", {"process": "Processing files"}, f"dummy_log.log"
        
    except Exception as exc:  # Catch all exceptions
        tb = traceback.format_exc()
        logger.exception(f"βœ— Error during login_huggingface β†’ {exc}\n{tb}", exc_info=True) # Log the full traceback
        return [gr.update(interactive=True), f"βœ— An error occurred during login_huggingface β†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"]  # return the exception message
    
    #progress((1,16), desc=f"Log in: {is_loggedin_huggingface}")

    ## debug
    #logger.log(level=30, msg="pdf_files_inputs", extra={"input_arg[0]:": pdf_files[0]})

    #if not files:
    if not pdf_files or pdf_files is None:  ## Check if files is None. This handles the case where no files are uploaded.
        logger.log(level=30, msg="Initialising ProcessPool: No files uploaded.", extra={"pdf_files": pdf_files, "files_len": pdf_files_count})
        #outputs=[log_output, files_individual_JSON, files_individual_downloads],
        return [gr.update(interactive=True), "Initialising ProcessPool: No files uploaded.", {"Upload":"No files uploaded"}, f"dummy_log.log"]
    
    #progress((2,16), desc=f"Getting configuration values")
    # Get config values if not provided
    config_file = find_file("config.ini")  ##from file_handler.file_utils
    model_id = get_config_value(config_file, "MARKER_CAP", "MODEL_ID") if not model_id else model_id
    openai_base_url = get_config_value(config_file, "MARKER_CAP", "OPENAI_BASE_URL") if not openai_base_url else openai_base_url
    openai_image_format = get_config_value(config_file, "MARKER_CAP", "OPENAI_IMAGE_FORMAT") if not openai_image_format else openai_image_format
    max_workers = get_config_value(config_file, "MARKER_CAP", "MAX_WORKERS") if not max_workers else max_workers
    max_retries = get_config_value(config_file, "MARKER_CAP", "MAX_RETRIES") if not max_retries else max_retries
    output_format = get_config_value(config_file, "MARKER_CAP", "OUTPUT_FORMAT") if not output_format else output_format
    output_dir_string = str(get_config_value(config_file, "MARKER_CAP", "OUTPUT_DIR") if not output_dir_string else output_dir_string)
    use_llm = get_config_value(config_file, "MARKER_CAP", "USE_LLM") if not use_llm else use_llm
    page_range = get_config_value(config_file,"MARKER_CAP", "PAGE_RANGE") if not page_range else page_range
    #progress((3,16), desc="Retrieved configuration values")

    # Create the initargs tuple from the Gradio inputs: # 'files' is an iterable, and handled separately.
    #progress((4,16), desc=f"Initialiasing init_args")
    yield gr.update(interactive=False), f"Initialising init_args", {"process": "Processing files ..."}, f"dummy_log.log"
    init_args = (
            provider,            
            model_id,
            #base_url,
            hf_provider,
            endpoint,
            backend_choice,
            system_message,
            max_tokens,
            temperature,
            top_p,
            stream,
            api_token,
            openai_base_url,
            openai_image_format,
            max_workers,
            max_retries,
            output_format,
            output_dir_string,
            use_llm,
            page_range,
        )
    
    #global docextractor   ##SMY: deprecated.
    try:
        results = []  ## initialised pool result holder
        # Create a pool with init_worker initialiser
        logger.log(level=30, msg="Initialising ProcessPoolExecutor: pool:", extra={"pdf_files": pdf_files, "files_len": len(pdf_files), "model_id": model_id, "output_dir": output_dir_string})  #pdf_files_count
        #progress((5,16), desc=f"Initialising ProcessPoolExecutor: Processing Files ...")
        yield gr.update(interactive=False), f"Initialising ProcessPoolExecutor: Processing Files ...", {"process": "Processing files ..."}, f"dummy_log.log"

        with ProcessPoolExecutor(
            max_workers=max_workers,
            initializer=init_worker,
            initargs=init_args
        ) as pool:
            #logger.log(level=30, msg="Initialising ProcessPoolExecutor: pool:", extra={"pdf_files": pdf_files, "files_len": len(pdf_files), "model_id": model_id, "output_dir": output_dir_string})  #pdf_files_count
            #progress((6,16), desc=f"Starting ProcessPool queue: Processing Files ...")

            # Update the Gradio UI to improve user-friendly eXperience
            #outputs=[process_button, log_output, files_individual_JSON, files_individual_downloads],
                        
                        
            # Map the files (pdf_files) to the conversion function (pdf2md_converter.convert_file)
            # The 'docconverter' argument is implicitly handled by the initialiser
            #futures = [pool.map(pdf2md_converter.convert_files, f) for f in pdf_files]
            #logs = [f.result() for f in as_completed(futures)]
            #futures = [pool.submit(pdf2md_converter.convert_files, file) for file in pdf_files]
            #logs = [f.result() for f in futures]
            
            try:
                #(7,16), desc=f"ProcessPoolExecutor: Creating output_dir")
                yield gr.update(interactive=False), f"Creating output_dir ...", {"process": "Processing files ..."}, f"dummy_log.log"
                pdf2md_converter.output_dir_string = output_dir_string   ##SMY: attempt setting directly to resolve pool.map iterable
                #progress((8,16), desc=f"ProcessPoolExecutor: Created output_dir.")
                yield gr.update(interactive=False), f"Created output_dir ...", {"process": "Processing files ..."}, f"dummy_log.log"
                
            except Exception as exc:
                            # Raise the exception to stop the Gradio app: exception to halt execution
                            logger.exception("Error during creating output_dir", exc_info=True)  # Log the full traceback
                            traceback.print_exc()  # Print the exception traceback
                            #return f"An error occurred during pool.map: {str(exc)}", f"Error: {exc}", f"Error: {exc}"  ## return the exception message
                            # Update the Gradio UI to improve user-friendly eXperience
                            yield gr.update(interactive=True), f"An error occurred creating output_dir: {str(exc)}", {"Error":f"Error: {exc}"}, f"dummy_log.log"  ## return the exception message
               
            try:
                #progress((9,16), desc=f"ProcessPoolExecutor: Pooling file conversion ...")
                yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log"
                # Use progress.tqdm to integrate with the executor map
                #results = pool.map(pdf2md_converter.convert_files, pdf_files)  ##SMY iterables  #max_retries #output_dir_string)
                for result_interim in progress.tqdm(
                    iterable=pool.map(pdf2md_converter.convert_files, pdf_files), total=len(pdf_files)
                    ):
                    results.append(result_interim)
                    #progress((10,16), desc=f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)}[:20]]")
                    # Update the Gradio UI to improve user-friendly eXperience
                    yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)}[:20]]", {"process": "Processing files ..."}, f"dummy_log.log"
                    
                #progress((11,16), desc=f"ProcessPoolExecutor: Got Results from files conversion")
                yield gr.update(interactive=True), f"rocessPoolExecutor: Got Results from files conversion: [{str(result_interim)}[:20]]", {"process": "Processing files ..."}, f"dummy_log.log"
            except Exception as exc:
                # Raise the exception to stop the Gradio app: exception to halt execution
                logger.exception("Error during pooling file conversion", exc_info=True)  # Log the full traceback
                traceback.print_exc()  # Print the exception traceback
                return [gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}"}, f"dummy_log.log"]  ## return the exception message
                # Update the Gradio UI to improve user-friendly eXperience
                #yield gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}"}, f"dummy_log.log"  ## return the exception message
            
            #'''
            try:
                logger.log(level=20, msg="ProcessPoolExecutor pool result:", extra={"results": str(results)})
                logs = []
                logs_files_images = []
                #logs.extend(results)   ## performant pythonic
                #logs = list[results]  ## 
                logs = [result for result in results]  ## pythonic list comprehension
                ## logs : [file , images , filepath, image_path]
                
                #logs_files_images = logs_files.extend(logs_images)  #zip(logs_files, logs_images)   ##SMY: in progress
                logs_count =  0
                #for log in logs:
                for i, log in enumerate(logs):
                    logs_files_images.append(log.get("filepath") if is_dict(log) or is_list_of_dicts(logs) else "Error or no file_path")  # isinstance(log, (dict, str))
                    logs_files_images.extend(list(image for image in log.get("image_path", "Error or no image_path")))
                    i_image = log.get("images", 0)
                    # Update the Gradio UI to improve user-friendly eXperience
                    #yield gr.update(interactive=False), f"Processing files: {logs_files_images[logs_count]}", {"process": "Processing files"}, f"dummy_log.log"
                    logs_count = i+i_image
                
                #progress((12,16), desc="Processing results from files conversion")  ##rekickin
                #logs_files_images.append(logs_filepath) ## to del
                #logs_files_images.extend(logs_images)   ## to del
            except Exception as exc:
                logger.exception("Error during processing results logs β†’ {exc}\n{tb}", exc_info=True)  # Log the full traceback
                traceback.print_exc()  # Print the exception traceback
                return [gr.update(interactive=True), f"An error occurred during processing results logs: {str(exc)}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"]  ## return the exception message
                #yield gr.update(interactive=True), f"An error occurred during processing results logs: {str(exc)}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"  ## return the exception message
            
            #'''
    except Exception as exc:
        tb = traceback.format_exc()
        logger.exception(f"βœ— Error during ProcessPoolExecutor β†’ {exc}\n{tb}" , exc_info=True)  # Log the full traceback
        #traceback.print_exc()  # Print the exception traceback
        yield gr.update(interactive=True), f"βœ— An error occurred during ProcessPoolExecutorβ†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"  # return the exception message

    '''
    logger.log(level=20, msg="ProcessPoolExecutor pool result:", extra={"results": str(results)})
    logs = []
    #logs.extend(results)   ## performant pythonic
    #logs = list[results]  ## 
    logs = [result for result in results]  ## pythonic list comprehension
    '''

    # Zip Processed md Files and images. Insert to first index
    try:  ##from file_handler.file_utils
        #progress((13,16), desc="Zipping processed files and images")
        zipped_processed_files = zip_processed_files(root_dir=f"data/{output_dir_string}", file_paths=logs_files_images, tz_hours=tz_hours, date_format='%d%b%Y_%H-%M-%S')  #date_format='%d%b%Y'
        logs_files_images.insert(0, zipped_processed_files)
        #logs_files_images.insert(1, "====================")

        #progress((14,16), desc="Zipped processed files and images")
        #yield gr.update(interactive=False), f"Processing zip and files: {logs_files_images}", {"process": "Processing files"}, f"dummy_log.log"
    
    except Exception as exc:
        tb = traceback.format_exc()
        logger.exception(f"βœ— Error during zipping processed files β†’ {exc}\n{tb}" , exc_info=True)  # Log the full traceback
        #traceback.print_exc()  # Print the exception traceback
        #return gr.update(interactive=True), f"βœ— An error occurred during zipping files β†’ {exc}\n{tb}", f"Error: {exc}", f"Error: {exc}"  # return the exception message
        yield gr.update(interactive=True), f"βœ— An error occurred during zipping files β†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"  # return the exception message

    
    # Return processed files log
    try:
        #progress((15,16), desc="Formatting processed log results")
        ## # Convert logs list of dicts to formatted json string
        logs_return_formatted_json_string = file_handler.file_utils.process_dicts_data(logs)   #"\n".join(log for log in logs)  ##SMY outputs to gr.JSON component with no need for json.dumps(data, indent=)
        #logs_files_images_return = "\n".join(path for path in logs_files_images)  ##TypeError: sequence item 0: expected str instance, WindowsPath found
        
        ##convert the List of Path objects to List of string for gr.Files output
        #logs_files_images_return = list(str(path) for path in logs_files_images)  
        
        ## # Convert any Path objects to strings, but leave strings as-is
        logs_files_images_return = list(str(path) if isinstance(path, Path) else path for path in logs_files_images)
        logger.log(level=20, msg="File conversion complete. Sending outcome to Gradio:", extra={"logs_files_image_return": str(logs_files_images_return)})  ## debug: FileNotFoundError: [WinError 2] The system cannot find the file specified: 'Error or no image_path'
        
        #progress((16,16), desc="Complete processing and formatting file processing results")
        #outputs=[process_button, log_output, files_individual_JSON, files_individual_downloads],
        #return "\n".join(logs), "\n".join(logs_files_images)    #"\n".join(logs_files)
        
        yield  gr.update(interactive=True), gr.update(value=logs_return_formatted_json_string), gr.update(value=logs_return_formatted_json_string, visible=True), gr.update(value=logs_files_images_return, visible=True)    ##SMY: redundant
        return [gr.update(interactive=True), gr.update(value=logs_return_formatted_json_string), gr.update(value=logs_return_formatted_json_string, visible=True), gr.update(value=logs_files_images_return, visible=True)]
        #yield gr.update(interactive=True), logs_return_formatted_json_string, logs_return_formatted_json_string, logs_files_images_return
        #return [gr.update(interactive=True), logs_return_formatted_json_string, logs_return_formatted_json_string, logs_files_images_return]
        
    except Exception as exc:
        tb = traceback.format_exc()
        logger.exception(f"βœ— Error during returning result logs β†’ {exc}\n{tb}" , exc_info=True)  # Log the full traceback
        #traceback.print_exc()  # Print the exception traceback
        #return [gr.update(interactive=True), f"βœ— An error occurred during returning result logsβ†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"]  # return the exception message
        yield  [gr.update(interactive=True), f"βœ— An error occurred during returning result logsβ†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"]  # return the exception message

    #return "\n".join(log for log in logs), "\n".join(str(path) for path in logs_files_images)
    #print(f'logs_files_images: {"\n".join(str(path) for path in logs_files_images)}')
        
# files wrapping into list  ##SMY: Flagged for deprecation
def pdf_files_wrap(files: list[str]):
    # explicitly wrap file object in a list
    return [files] if not isinstance(files, list) else files
    #return [files]

##====================
## SMY: moved to logic file: See pdf_to_md.py. Currently unused
def convert_pdfs_to_md(file: gr.File | None, folder: str | None) -> dict:
    """
    Gradio callback for PDF β†’ Markdown.
    Accepts either a single file or a folder path (recursively).
    Leverages Marker, a pipeline of deep learning models, for conversion
    Returns a dictionary of filename β†’ Markdown string.
    """
    if not file and not folder:
        return {"error": "Please provide a PDF file or a folder."}

    pdf_paths = []

    # Single file
    if file:
        pdf_path = Path(file.name)
        pdf_paths.append(pdf_path)

    # Folder (recursively)
    if folder:
        try:
            pdf_paths.extend(collect_pdf_paths(folder))
        except Exception as exc:
            logger.exception("Folder traversal failed.")
            return {"error": str(exc)}

    if not pdf_paths:
        return {"error": "No PDF files found."}

    results = pdf2md_converter.batch_convert(pdf_paths)
    # Gradio expects a dict of {filename: content}
    return results

## SMY: to be implemented AND to refactor and moved to logic file
def convert_md_to_pdf(file: gr.File | None, folder: str | None) -> list[gr.File]:
    """
    Gradio callback for Markdown β†’ PDF.
    Returns a list of generated PDF files (as Gradio File objects).
    """
    if not file and not folder:
        return []

    md_paths = []

    # Single file
    if file:
        md_path = Path(file.name)
        md_paths.append(md_path)

    # Folder
    if folder:
        try:
            md_paths.extend(collect_markdown_paths(folder))
        except Exception as exc:
            logger.exception("Folder traversal failed.")
            return []

    if not md_paths:
        return []

    output_dir = Path("./generated_pdfs")
    output_dir.mkdir(exist_ok=True)

    pdf_files = md2pdf_converter.batch_convert(md_paths, output_dir)
    # Convert to Gradio File objects
    gr_files = [gr.File(path=str(p)) for p in pdf_files]
    return gr_files


## SMY: to refactor and moved to logic file. Currently unused
'''
def convert_htmls_to_md(file: gr.File | None, folder: str | None) -> dict:
    """
    Gradio callback for HTML β†’ Markdown.
    Accepts either a single file or a folder path (recursively).
    Returns a dictionary of filename β†’ Markdown string.
    """
    if not file and not folder:
        return {"error": "Please provide a HTML file or a folder."}

    html_paths = []

    # Single file
    if file:
        html_path = Path(file.name)
        html_paths.append(html_path)

    # Folder (recursively)
    if folder:
        try:
            html_paths.extend(collect_html_paths(folder))
        except Exception as exc:
            logger.exception("Folder traversal failed.")
            return {"error": str(exc)}

    if not html_paths:
        return {"error": "No HTML files found."}

    results = html2md_converter.batch_convert(html_paths)
    # Gradio expects a dict of {filename: content}
    return results
'''

##====================

def build_interface() -> gr.Blocks:
    """
    Assemble the Gradio Blocks UI.
    """
        
    # Use custom CSS to style the file component
    custom_css = """
    .file-or-directory-area {
        border: 2px dashed #ccc;
        padding: 20px;
        text-align: center;
        border-radius: 8px;
        margin-bottom: 10px;
        display: flex;
        flex-direction: column;
        align-items: center;
    }
    .file-or-directory-area:hover {
        border-color: #007bff;
        background-color: #f8f9fa;
    }
    .gradio-upload-btn {
        margin-top: 10px;
    }
    """

    ##SMY: flagged; to move to file_handler.file_utils
    def is_file_with_extension(path_obj: Path) -> bool:
        """
        Checks if a pathlib.Path object is a file and has a non-empty extension.
        """
        path_obj = path_obj if isinstance(path_obj, Path) else Path(path_obj) if isinstance(path_obj, str) else None
        return path_obj.is_file() and bool(path_obj.suffix)

    ##SMY: flagged; to move to file_handler.file_utils
    def accumulate_files(uploaded_files, current_state):
        """
        Accumulates newly uploaded files with the existing state.
        """
        # Initialize state if it's the first run
        if current_state is None:
            current_state = []
        
        # If no files were uploaded in this interaction, return the current state unchanged
        if not uploaded_files:
            return current_state, f"No new files uploaded. Still tracking {len(current_state)} file(s)."
        
        # Get the temporary paths of the newly uploaded files
        # call is_file_with_extension to check if pathlib.Path object is a file and has a non-empty extension
        new_file_paths = [f.name for f in uploaded_files if is_file_with_extension(Path(f.name))]  #Path(f.name) and Path(f.name).is_file() and bool(Path(f.name).suffix)]  #Path(f.name).suffix.lower() !=""]

        # Concatenate the new files with the existing ones in the state
        updated_files = current_state + new_file_paths
        updated_filenames = [Path(f).name for f in updated_files]
        
        # Return the updated state and a message to the user
        #file_info = "\n".join(updated_files)
        filename_info = "\n".join(updated_filenames)
        #message = f"Accumulated {len(updated_files)} file(s) total.\n\nAll file paths:\n{file_info}"
        message = f"Accumulated {len(updated_files)} file(s) total: \n{filename_info}"
        
        return updated_files, message

    # with gr.Blocks(title=TITLE) as demo
    with gr.Blocks(title=TITLE, css=custom_css) as demo:
        gr.Markdown(f"## {DESCRIPTION}")

        # Clean UI: Model parameters hidden in collapsible accordion
        with gr.Accordion("βš™οΈ LLM Model Settings", open=False):
            gr.Markdown(f"#### **Backend Configuration**")
            system_message = gr.Textbox(
                label="System Message",
                lines=2,
            )
            with gr.Row():
                provider_dd = gr.Dropdown(
                    choices=["huggingface", "openai"],
                    label="Provider",
                    value="huggingface",
                    #allow_custom_value=True,
                )
                backend_choice = gr.Dropdown(
                    choices=["model-id", "provider", "endpoint"],
                    label="HF Backend Choice",
                )  ## SMY: ensure HFClient maps correctly 
                model_tb = gr.Textbox(
                    label="Model ID",
                    value="meta-llama/Llama-4-Maverick-17B-128E-Instruct",  #image-Text-to-Text  #"openai/gpt-oss-120b",  ##Text-to-Text
                )
                endpoint_tb = gr.Textbox(
                    label="Endpoint",
                    placeholder="Optional custom endpoint",
                )
            with gr.Row():
                max_token_sl = gr.Slider(
                    label="Max Tokens",
                    minimum=1,
                    maximum=131172,  #65536,  #32768,  #16384,  #8192,
                    value=1024,  #512,
                    step=1,
                )
                temperature_sl = gr.Slider(
                    label="Temperature",
                    minimum=0.0,
                    maximum=1.0,
                    value=0.0,
                    step=0.1,  #0.01
                )
                top_p_sl = gr.Slider(
                    label="Top-p",
                    minimum=0.0,
                    maximum=1.0,
                    value=0.1,
                    step=0.1,  #0.01
                )
                with gr.Column():
                    stream_cb = gr.Checkbox(
                        label="LLM Streaming",
                        value=False,
                    )
                    #tz_hours_tb = gr.Textbox(value=None, label="TZ Hours", placeholder="Timezone in numbers", max_lines=1,)
                    tz_hours_num = gr.Number(label="TZ Hours", placeholder="Timezone in numbers", min_width=5,)
            with gr.Row():
                api_token_tb = gr.Textbox(
                    label="API Token [OPTIONAL]",
                    type="password",
                    placeholder="hf_xxx or openai key"
                )
                hf_provider_dd = gr.Dropdown(
                    choices=["fireworks-ai", "together-ai", "openrouter-ai", "hf-inference"],
                    value="fireworks-ai",
                    label="Provider",
                    allow_custom_value=True,  # let users type new providers as they appear
                )

        # Clean UI: Model parameters hidden in collapsible accordion
        with gr.Accordion("βš™οΈ Marker Settings", open=False):
            gr.Markdown(f"#### **Marker Configuration**")
            with gr.Row():
                openai_base_url_tb = gr.Textbox(
                    label="OpenAI Base URL: Default HuggingFace",
                    value="https://router.huggingface.co/v1",
                    lines=1,
                    max_lines=1,
                )
                openai_image_format_dd = gr.Dropdown(
                    choices=["webp", "png", "jpeg"],
                    label="OpenAI Image Format",
                    value="webp",
                )
                output_format_dd = gr.Dropdown(
                    choices=["markdown", "html"],  #, "json", "chunks"],  ##SMY: To be enabled later
                    #choices=["markdown", "html", "json", "chunks"],
                    label="Output Format",
                    value="markdown",
                )
                output_dir_tb = gr.Textbox(
                    label="Output Directory",
                    value="output_dir",  #"output_md",
                    lines=1,
                    max_lines=1,
                )
            with gr.Row():
                max_workers_sl = gr.Slider(
                    label="Max Worker",
                    minimum=1,
                    maximum=7,
                    value=4,
                    step=1  
                )
                max_retries_sl = gr.Slider(
                    label="Max Retry",
                    minimum=1,
                    maximum=3,
                    value=2,
                    step=1  #0.01
                )
                use_llm_cb = gr.Checkbox(
                    label="Use LLM for Marker conversion",
                    value=False
                )
                page_range_tb = gr.Textbox(
                    label="Page Range (Optional)",
                    placeholder="Example: 0,1-5,8,12-15",
                    lines=1,
                    max_lines=1,
                )


        with gr.Accordion("πŸ€— HuggingFace Client Logout", open=True):  #, open=False):
            # Logout controls
            with gr.Row():
                #hf_login_logout_btn = gr.LoginButton(value="Sign in to HuggingFace πŸ€—", logout_value="Clear Session & Logout of HF: ({})", variant="huggingface")
                hf_login_logout_btn = gr.LoginButton(value="Sign in to HuggingFace πŸ€—", logout_value="Logout of HF: ({}) πŸ€—", variant="huggingface")
                #logout_btn = gr.Button("Logout from session & HF (inference) Client", variant="stop", )

            logout_status_md = gr.Markdown(visible=True)  #visible=False)
        
        # The gr.State component to hold the accumulated list of files
        uploaded_file_list = gr.State([])   ##NB: initial value of `gr.State` must be able to be deepcopied

        # --- PDF & HTML β†’ Markdown tab ---
        with gr.Tab(" πŸ“„ PDF & HTML ➜ Markdown"):
            gr.Markdown(f"#### {DESCRIPTION_PDF_HTML}")

            ### flag4deprecation  #earlier implementation
            '''
            pdf_files = gr.File(
                label="Upload PDF, HTML or PDF and HTMLfiles",
                file_count="directory", ## handle directory and files upload #"multiple",
                type="filepath",
                file_types=["pdf", ".pdf"],
                #size="small",
            )
            pdf_files_count = gr.TextArea(label="Files Count", interactive=False, lines=1)
            with gr.Row():
                btn_pdf_count = gr.Button("Count Files")
                #btn_pdf_upload = gr.UploadButton("Upload files")
                btn_pdf_convert = gr.Button("Convert PDF(s)")
            '''

            with gr.Column(elem_classes=["file-or-directory-area"]):
                with gr.Row():
                    file_btn = gr.UploadButton(
                    #file_btn = gr.File(
                        label="Upload Multiple Files",
                        file_count="multiple",
                        file_types=["file"],
                        #height=25,  #"sm",
                        size="sm",
                        elem_classes=["gradio-upload-btn"]
                    )
                    dir_btn = gr.UploadButton(
                    #dir_btn = gr.File(
                        label="Upload a Directory",
                        file_count="directory",
                        #file_types=["file"],  #Warning: The `file_types` parameter is ignored when `file_count` is 'directory'
                        #height=25,  #"0.5",
                        size="sm",
                        elem_classes=["gradio-upload-btn"]
                    )
            with gr.Accordion("Display uploaded", open=True):
                # Displays the accumulated file paths
                output_textbox = gr.Textbox(label="Accumulated Files", lines=3) #, max_lines=4)  #10
            
            with gr.Row():
                process_button = gr.Button("Process All Uploaded Files", variant="primary")
                clear_button = gr.Button("Clear All Uploads", variant="secondary")


        # --- PDF β†’ Markdown tab ---
        with gr.Tab(" πŸ“„ PDF ➜ Markdown (Flag for DEPRECATION)", interactive=False, visible=True):  #False
            gr.Markdown(f"#### {DESCRIPTION_PDF}")

            files_upload_pdf = gr.File(
                label="Upload PDF files",
                file_count="directory", ## handle directory and files upload #"multiple",
                type="filepath",
                file_types=["pdf", ".pdf"],
                #size="small",
            )
            files_count = gr.TextArea(label="Files Count", interactive=False, lines=1)  #pdf_files_count
            with gr.Row():
                btn_pdf_count = gr.Button("Count Files")
                #btn_pdf_upload = gr.UploadButton("Upload files")
                btn_pdf_convert = gr.Button("Convert PDF(s)")
        
        # --- πŸ“ƒ HTML β†’ Markdown tab ---
        with gr.Tab("πŸ•ΈοΈ HTML ➜ Markdown: (Flag for DEPRECATION)", interactive=False, visible=False):
            gr.Markdown(f"#### {DESCRIPTION_HTML}")

            files_upload_html = gr.File(
                label="Upload HTML files",
                file_count="multiple",
                type="filepath",
                file_types=["html", ".html", "htm", ".htm"]
            )
            #btn_html_convert = gr.Button("Convert HTML(s)")
            html_files_count = gr.TextArea(label="Files Count", interactive=False, lines=1)
            with gr.Row():
                btn_html_count = gr.Button("Count Files")
                #btn_pdf_upload = gr.UploadButton("Upload files")
                btn_html_convert = gr.Button("Convert PDF(s)")


        # --- Markdown β†’ PDF tab ---
        with gr.Tab("PENDING: Markdown ➜ PDF", interactive=False):
            gr.Markdown(f"#### {DESCRIPTION_MD}")

            md_files = gr.File(
                label="Upload Markdown files",
                file_count="multiple",
                type="filepath",
                file_types=["md", ".md"]
            )
            btn_md_convert = gr.Button("Convert Markdown to PDF)")
            output_pdf = gr.Gallery(label="Generated PDFs", elem_id="pdf_gallery")

            '''
            md_input = gr.File(label="Upload a single Markdown file", file_count="single")
            md_folder_input = gr.Textbox(
                label="Or provide a folder path (recursively)",
                placeholder="/path/to/folder",
            )
            convert_md_btn = gr.Button("Convert Markdown to PDF")
            output_pdf = gr.Gallery(label="Generated PDFs", elem_id="pdf_gallery")

            convert_md_btn.click(
                fn=convert_md_to_pdf,
                inputs=[md_input, md_folder_input],
                outputs=output_pdf,
            )
            '''

        # A Files component to display individual processed files as download links
        with gr.Accordion("⏬ View and Download processed files", open=True):  #, open=False
            
            ##SMY: future
            zip_btn = gr.DownloadButton("Download Zip file of all processed files", visible=False)   #.Button()
            
            # Placeholder to download zip file of processed files
            download_zip_file = gr.File(label="Download processed Files (ZIP)", interactive=False, visible=False)  #, height="1"

            with gr.Row():
                files_individual_JSON = gr.JSON(label="Serialised JSON list", max_height=250, visible=False)
                files_individual_downloads = gr.Files(label="Individual Processed Files", visible=False)

        ## Displays processed file paths
        with gr.Accordion("View processing log", open=True): #open=False):
            log_output = gr.Textbox(
                label="Conversion Logs",
                lines=5,
                #max_lines=25,
                #interactive=False
            )

        # Initialise gr.State
        state_max_workers = gr.State(4)  #max_workers_sl,
        state_max_retries = gr.State(2) #max_retries_sl,
        state_tz_hours    = gr.State(value=None)
        state_api_token   = gr.State(None)
        processed_file_state = gr.State([])   ##SMY: future: View and Download processed files


        def update_state_stored_value(new_component_input):
            """ Updates stored state: use for max_workers and max_retries """
            return new_component_input
        
        # Update gr.State values on slider components change. NB: initial value of `gr.State` must be able to be deepcopied
        max_workers_sl.change(update_state_stored_value, inputs=max_workers_sl, outputs=state_max_workers)
        max_retries_sl.change(update_state_stored_value, inputs=max_retries_sl, outputs=state_max_retries)
        tz_hours_num.change(update_state_stored_value, inputs=tz_hours_num, outputs=state_tz_hours)
        api_token_tb.change(update_state_stored_value, inputs=api_token_tb, outputs=state_api_token)
        

        # LLM Setting: Validate provider on change; warn but allow continue
        def on_provider_change(provider_value: str):
            if not provider_value:
                return
            if not is_valid_provider(provider_value):
                sug = suggest_providers(provider_value)
                extra = f" Suggestions: {', '.join(sug)}." if sug else ""
                gr.Warning(
                    f"Provider not on HF provider list. See https://huggingface.co/docs/inference-providers/index.{extra}"
                )
        hf_provider_dd.change(on_provider_change, inputs=hf_provider_dd, outputs=None)

        
        # HuggingFace Client Logout
        '''def get_login_token(state_api_token_arg, oauth_token: gr.OAuthToken | None=None):
            #oauth_token = get_token() if oauth_token is not None else state_api_token
            #oauth_token = oauth_token if oauth_token else state_api_token_arg
            if oauth_token:
                print(oauth_token)
                return oauth_token
            else:
                oauth_token = get_token()
                print(oauth_token)
                return oauth_token'''
        #'''
        def do_logout():    ##SMY: use with clear_state() as needed
            try:
                #ok = docextractor.client.logout()
                ok = docconverter.client.logout()
                # Reset token textbox on successful logout
                #msg = "βœ… Logged out of HuggingFace and cleared tokens. Remember to log out of HuggingFace completely." if ok else "⚠️ Logout failed."
                msg = "βœ… Session Cleared. Remember to close browser." if ok else "⚠️ HF client closing failed."
                
                return msg
                #return gr.update(value=""), gr.update(visible=True, value=msg), gr.update(value="Sign in to HuggingFace πŸ€—"), gr.update(value="Clear session")
            except AttributeError:
                msg = "⚠️ HF client closing failed."
                
                return msg
                #return gr.update(value=""), gr.update(visible=True, value=msg), gr.update(value="Sign in to HuggingFace πŸ€—"), gr.update(value="Clear session", interactive=False)
        #'''    
        def do_logout_hf():
            try:
                ok = docconverter.client.logout()
                # Reset token textbox on successful logout
                msg = "βœ… Session Cleared. Remember to close browser." if ok else "⚠️ Logout & Session Cleared"
                #return gr.update(value=""), gr.update(visible=True, value=msg), gr.update(value="Sign in to HuggingFace πŸ€—"), gr.update(value="Clear session", interactive=False)
                return msg
                #yield msg   ## generator for string
            except AttributeError:
                msg = "⚠️ Logout. No HF session"
                return msg
                #yield msg   ## generator for string
            
        #def custom_do_logout(hf_login_logout_btn_arg: gr.LoginButton, state_api_token_arg: gr.State):
        def custom_do_logout():
            #global state_api_token 
            '''  ##SMY: TO DELETE
            try:
                state_api_token_get= get_token() if "Clear Session & Logout of HF" in hf_login_logout_btn_arg.value else state_api_token_arg.value
            except AttributeError:
                #state_api_token_get= get_token() if "Clear Session & Logout of HF" in hf_login_logout_btn_arg else state_api_token_arg
                state_api_token_get = get_login_token(state_api_token_arg)
            '''
            #do_logout()
            #return gr.update(value="Sign in to HuggingFace πŸ€—")
            msg = do_logout_hf()
            ##debug
            #msg = "βœ… Session Cleared. Remember to close browser." if "Clear Session & Logout of HF" in hf_login_logout_btn else "⚠️ Logout"  # & Session Cleared"
            return gr.update(value="Sign in to HuggingFace πŸ€—"), gr.update(value=""), gr.update(visible=True, value=msg)  #, state_api_token_arg
            #yield gr.update(value="Sign in to HuggingFace πŸ€—"), gr.update(value=""), gr.update(visible=True, value=msg)

        # Files, status, session clearing
        def clear_state():
            """
            Clears the accumulated state of uploaded file list, output textbox, files and directory upload.
            """
            #msg = f"Files list cleared: {do_logout()}"  ## use as needed
            msg = f"Files list cleared."
            yield [], msg, '', ''
            #return [], f"Files list cleared.", [], []

        #hf_login_logout_btn.click(fn=custom_do_logout, inputs=None, outputs=hf_login_logout_btn)
        ##unused
        ###hf_login_logout_btn.click(fn=custom_do_logout, inputs=[hf_login_logout_btn, state_api_token], outputs=[hf_login_logout_btn, api_token_tb, logout_status_md, state_api_token])
        ###logout_btn.click(fn=do_logout, inputs=None, outputs=[api_token_tb, logout_status_md, hf_login_logout_btn, logout_btn])
        #logout_btn.click(fn=clear_state, inputs=None, outputs=[uploaded_file_list, output_textbox, log_output, api_token_tb])
        hf_login_logout_btn.click(fn=custom_do_logout, inputs=None, outputs=[hf_login_logout_btn, api_token_tb, logout_status_md])  #, state_api_token])

        # --- PDF & HTML β†’ Markdown tab ---
        # Event handler for the multiple file upload button
        file_btn.upload(
            fn=accumulate_files,
            inputs=[file_btn, uploaded_file_list],
            outputs=[uploaded_file_list, output_textbox]
        )

        # Event handler for the directory upload button
        dir_btn.upload(
            fn=accumulate_files,
            inputs=[dir_btn, uploaded_file_list],
            outputs=[uploaded_file_list, output_textbox]
        )

        # Event handler for the "Clear" button
        clear_button.click(
            fn=clear_state,
            inputs=None,
            outputs=[uploaded_file_list, output_textbox, file_btn, dir_btn],
        )

        # file inputs
        ## [wierd] NB: inputs_arg is a list of Gradio component objects, not the values of those components.
        ## inputs_arg variable captures the state of these components at the time the list is created. 
        ## When btn_convert.click() is called later, it uses the list as it was initially defined
        ##
        ## SMY: Gradio component values are not directly mutable.
        ## Instead, you should pass the component values to a function,
        ## and then use the return value of the function to update the component.
        ## Discarding for now. #//TODO: investigate further.
        ## SMY: Solved: using gr.State 
        inputs_arg = [
            #pdf_files,
            ##pdf_files_wrap(pdf_files),  # wrap pdf_files in a list (if not already)
            uploaded_file_list,
            files_count,  #pdf_files_count,
            provider_dd,
            model_tb,
            hf_provider_dd,
            endpoint_tb,
            backend_choice,
            system_message,
            max_token_sl,
            temperature_sl,
            top_p_sl,
            stream_cb,
            api_token_tb,   #state_api_token,  #api_token_tb,
            #gr.State(4),   # max_workers
            #gr.State(3),    # max_retries
            openai_base_url_tb,
            openai_image_format_dd,
            state_max_workers, #gr.State(4),  #max_workers_sl,
            state_max_retries, #gr.State(2), #max_retries_sl,
            output_format_dd,
            output_dir_tb,
            use_llm_cb,
            page_range_tb,
            tz_hours_num,   #state_tz_hours 
        ]

        ## debug
        #logger.log(level=30, msg="About to execute btn_pdf_convert.click", extra={"files_len": pdf_files_count, "pdf_files": pdf_files})
        
        try:
            #logger.log(level=30, msg="input_arg[0]: {input_arg[0]}")
            process_button.click(
            #pdf_files.upload( 
                fn=convert_batch,
                inputs=inputs_arg,
                outputs=[process_button, log_output, files_individual_JSON, files_individual_downloads],
            )
        except Exception as exc:
            tb = traceback.format_exc()
            logger.exception(f"βœ— Error during process_button.click β†’ {exc}\n{tb}", exc_info=True)
            msg = "βœ— An error occurred during process_button.click"  # β†’
            #return f"βœ— An error occurred during process_button.click β†’ {exc}\n{tb}"
            return gr.update(interactive=True), f"{msg} β†’ {exc}\n{tb}", f"{msg} β†’ {exc}", f"{msg} β†’ {exc}"

        ##gr.File .upload() event, fire only after a file has been uploaded
        # Event handler for the pdf file upload button
        files_upload_pdf.upload(
            fn=accumulate_files,
            inputs=[files_upload_pdf, uploaded_file_list],
            outputs=[uploaded_file_list, log_output]
        )
        #inputs_arg[0] = files_upload
        btn_pdf_convert.click(
        #pdf_files.upload( 
            fn=convert_batch,
            outputs=[btn_pdf_convert, log_output, files_individual_JSON, files_individual_downloads],
            inputs=inputs_arg, 
        ) 
        #    )

        # reuse the same business logic for HTML tab
        # Event handler for the pdf file upload button
        files_upload_html.upload(
            fn=accumulate_files,
            inputs=[files_upload_html, uploaded_file_list],
            outputs=[uploaded_file_list, log_output]
        )
        #inputs_arg[0] = html_files
        btn_html_convert.click(
            fn=convert_batch,
            inputs=inputs_arg,
            outputs=[btn_html_convert,log_output, files_individual_JSON, files_individual_downloads]
        )

        def get_file_count(file_list):
            """
            Counts the number of files in the list.

            Args:
                file_list (list): A list of temporary file objects.
            Returns:
                str: A message with the number of uploaded files.
            """
            if file_list:
                return f"{len(file_list)}", f"Upload: {len(file_list)} files: \n {file_list}"  #{[pdf_files.value]}"
            else:
                return "No files uploaded.", "No files uploaded."        # Count files button
        
        btn_pdf_count.click(
            fn=get_file_count,
            inputs=[files_upload_pdf],
            outputs=[files_count, log_output]
        )
        btn_html_count.click(
            fn=get_file_count,
            inputs=[files_upload_html],
            outputs=[html_files_count, log_output]
        )        
        
        # Validate files upload on change; warn but allow continue
        def on_pdf_files_change(pdf_files_value: list[str]):
            # explicitly wrap file object in a list
            pdf_files_value = pdf_files_wrap(pdf_files_value)
            #if not isinstance(pdf_files_value, list):
            #    pdf_files_value = [pdf_files_value]

            pdf_files_path = [file.name for file in pdf_files_value]
            pdf_files_len = len(pdf_files_value)  #len(pdf_files_path)
            if pdf_files_value:
                #return            
                return pdf_files_path, pdf_files_len
        #pdf_files.change(on_pdf_files_change, inputs=pdf_files, outputs=[log_output, pdf_files_count])  #, postprocess=False)  ##debug


    return demo