Spaces:
Sleeping
Sleeping
File size: 15,029 Bytes
0fd441a c6fb648 0fd441a c6fb648 0fd441a bfbdd1d 653f79c bfbdd1d 0fd441a c6fb648 0fd441a c6fb648 0fd441a 8290881 c6fb648 0fd441a c6fb648 0fd441a c6fb648 8290881 c6fb648 0fd441a c6fb648 0fd441a 8290881 0fd441a 8290881 0fd441a c6fb648 8290881 0fd441a c6fb648 8290881 0fd441a 8290881 653f79c bfbdd1d 8290881 bfbdd1d 653f79c bfbdd1d 8290881 653f79c c6fb648 0fd441a 653f79c 8290881 0fd441a bfbdd1d 8290881 bfbdd1d 8290881 0fd441a bfbdd1d 653f79c bfbdd1d 0fd441a bfbdd1d 08fe9f3 8290881 0fd441a c6fb648 0fd441a c6fb648 8290881 0fd441a 8290881 653f79c bfbdd1d 0fd441a 8290881 c6fb648 0fd441a 8290881 0fd441a bfbdd1d c6fb648 0fd441a c6fb648 bfbdd1d c6fb648 0fd441a c6fb648 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
from pathlib import Path
import traceback
#import time
from typing import Dict, Any, Type, Optional, Union, Literal #, BaseModel
from pydantic import BaseModel
from marker.models import create_model_dict
#from marker.converters.extraction import ExtractionConverter as MarkerExtractor ## structured pydantic extraction
from marker.converters.pdf import PdfConverter as MarkerConverter ## full document convertion/extraction
from marker.config.parser import ConfigParser ## Process custom configuration
from marker.services.openai import OpenAIService as MarkerOpenAIService
from marker.settings import settings
#from sympy import Union
from utils.logger import get_logger
logger = get_logger(__name__)
# create/load models. Called to curtail reloading models at each instance
def load_models():
""" Creates Marker's models dict. Initiate download of models """
return create_model_dict()
# Full document converter
class DocumentConverter:
"""
Business logic wrapper using Marker OpenAI LLM Services to
convert documents (PDF, HTML files) into markdowns + assets.
"""
def __init__(self,
#provider: str,
model_id: str,
#base_url: str,
hf_provider: str,
#endpoint_url: str,
#backend_choice: str,
#system_message: str,
#max_tokens: int,
temperature: float,
top_p: float,
#stream: bool,
api_token: str,
openai_base_url: str = "https://router.huggingface.co/v1",
openai_image_format: Optional[str] = "webp",
max_workers: Optional[str] = 1, #4, for config_dict["pdftext_workers"]
max_retries: Optional[int] = 2,
debug: Optional[bool] = None, #bool = False,
#output_format: str = "markdown",
output_format: Literal["markdown", "json", "html"] = "markdown",
output_dir: Optional[Union[str, Path]] = "output_dir",
use_llm: Optional[bool] = None, #bool = False, #Optional[bool] = False, #True,
force_ocr: Optional[bool] = None, #bool = False,
strip_existing_ocr: Optional[bool] = None, #bool = False,
disable_ocr_math: Optional[bool] = None, #bool = False,
page_range: Optional[str] = None, #str = None #Optional[str] = None,
):
#self.converter = None #MarkerConverter
self.model_id = model_id #"model_name"
self.openai_api_key = api_token ## to replace dependency on self.client.openai_api_key
self.openai_base_url = openai_base_url #, #self.base_url,
self.temperature = temperature #, self.client.temperature,
self.top_p = top_p # self.client.top_p,
self.llm_service = MarkerOpenAIService
self.openai_image_format = openai_image_format #"png" #better compatibility
self.max_workers = max_workers #int(1) ## pass to config_dict["pdftext_workers"]
self.max_retries = max_retries ## pass to __call__
self.debug = debug
#self.output_format = output_format
self.output_format = output_format
self.output_dir = settings.DEBUG_DATA_FOLDER if debug else output_dir,
self.use_llm = use_llm if use_llm else False #use_llm[0] if isinstance(use_llm, tuple) else use_llm, #False, #True,
self.force_ocr = force_ocr if force_ocr else False
self.strip_existing_ocr = strip_existing_ocr #if strip_existing_ocr else False
self.disable_ocr_math = disable_ocr_math #if disable_ocr else False
#self.page_range = page_range[0] if isinstance(page_range, tuple) else page_range ##SMY: iterating twice because self.page casting as hint type tuple!
self.page_range = page_range if page_range else None
# self.page_range = page_range[0] if isinstance(page_range, tuple) else page_range if isinstance(page_range, str) else None, ##Example: "0,4-8,16" ##Marker parses as List[int] #]debug #len(pdf_file)
self.converter = None
# 0) Instantiate the LLM Client (OPENAIChatClient): Get a provider‐agnostic chat function
##SMY: #future. Plan to integrate into Marker: uses its own LLM services (clients). As at 1.9.2, there's no huggingface client service.
'''
try:
self.client = OpenAIChatClient(
model_id=model_id,
hf_provider=hf_provider,
#base_url=base_url,
api_token=api_token,
temperature=temperature,
top_p=top_p,
)
logger.log(level=20, msg="✔️ OpenAIChatClient instantiated:", extra={"model_id": self.client.model_id, "chatclient": str(self.client)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error initialising OpenAIChatClient: {exc}\n{tb}")
raise RuntimeError(f"✗ Error initialising OpenAIChatClient: {exc}\n{tb}") #.with_traceback(tb)
'''
# 1) # Define the custom configuration for the Hugging Face LLM.
# Use typing.Dict and typing.Any for flexible dictionary type hints
try:
#self.config_dict: Dict[str, Any] = self.get_config_dict(model_id=model_id, llm_service=str(self.llm_service), output_format=output_format)
self.config_dict: Dict[str, Any] = self.get_config_dict()
##SMY: execute if page_range is none. `else None` ensures valid syntactic expression
##SMY: if falsely empty tuple () or None, pop the "page_range" key-value pair, else do nothing if truthy tuple value (i.e. keep as-is)
self.config_dict.pop("page_range", None) if not self.config_dict.get("page_range") else None
# use_llm test moved to config_dict
#self.config_dict.pop("use_llm", None) if not self.config_dict.get("use_llm") or self.config_dict.get("use_llm") is False or self.config_dict.get("use_llm") == 'False' else None
self.config_dict.pop("force_ocr", None) if not self.config_dict.get("force_ocr") or self.config_dict.get("force_ocr") is False or self.config_dict.get("force_ocr") == 'False' else None
logger.log(level=20, msg="✔️ config_dict custom configured:", extra={"service": "openai"}) #, "config": str(self.config_dict)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error configuring custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"✗ Error configuring custom config_dict: {exc}\n{tb}") #.with_traceback(tb)
# 2) Use the Marker's ConfigParser to process configuration.
# The `ConfigParser` class is explicitly imported and used as the type hint.
try:
config_parser: ConfigParser = ConfigParser(self.config_dict)
logger.log(level=20, msg="✔️ parsed/processed custom config_dict:", extra={"config": str(config_parser)}) #.config_dict)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error parsing/processing custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"✗ Error parsing/processing custom config_dict: {exc}\n{tb}") #.with_traceback(tb)
# 3) Load models if not already loaded in reload mode
from globals import config_load_models
try:
if config_load_models.model_dict:
model_dict = config_load_models.model_dict
#elif not config_load_models.model_dict or 'model_dict' not in globals():
else:
model_dict = load_models()
'''if 'model_dict' not in globals():
#model_dict = self.load_models()
model_dict = load_models()'''
except OSError as exc_ose:
tb = traceback.format_exc() #exc.__traceback__
logger.warning(f"⚠️ OSError: the paging file is too small (to complete reload): {exc_ose}\n{tb}")
pass
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error loading models (reload): {exc}\n{tb}")
raise RuntimeError(f"✗ Error loading models (reload): {exc}\n{tb}") #.with_traceback(tb)
# 4) Instantiate Marker's MarkerConverter (PdfConverter) with config managed by config_parser
try: # Assign llm_service if api_token. ##SMY: split and slicing ##Gets the string value
#llm_service_str = None if api_token == '' or api_token is None or self.use_llm is False else str(self.llm_service).split("'")[1] #
llm_service_str = None if not self.use_llm or self.use_llm == "False" or self.use_llm is False else str(self.llm_service).split("'")[1] #
# sets api_key required by Marker ## to handle Marker's assertion test on OpenAI
if llm_service_str:
os.environ["OPENAI_API_KEY"] = api_token if api_token and api_token != '' else os.getenv("OPENAI_API_KEY") or os.getenv("GEMINI_API_KEY") or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
#logger.log(level=20, msg="self.converter: instantiating MarkerConverter:", extra={"llm_service_str": llm_service_str, "api_token": api_token}) ##debug
config_dict = config_parser.generate_config_dict()
#config_dict["pdftext_worker"] = self.max_workers #1 ##SMY: moved to get_config_dicts()
#self.converter: marker.converters.pdf.PdfConverter
self.converter = MarkerConverter(
#artifact_dict=create_model_dict(),
artifact_dict=model_dict if model_dict else create_model_dict(),
config=config_dict,
#config=config_parser.generate_config_dict(),
#llm_service=self.llm_service ##SMY expecting str but self.llm_service, is service object marker.services of type BaseServices
llm_service=llm_service_str, ##resolve
processor_list=config_parser.get_processors(),
renderer=config_parser.get_renderer(),
)
logger.log(level=20, msg="✔️ MarkerConverter instantiated successfully:", extra={"converter.config": str(self.converter.config.get("openai_base_url")), "use_llm":self.converter.use_llm})
#return self.converter ##SMY: to query why did I comment out?. Bingo: "__init__() should return None, not 'PdfConverter'"
except Exception as exc:
tb = traceback.format_exc
logger.exception(f"✗ Error initialising MarkerExtractor: {exc}\n{tb}")
raise RuntimeError(f"✗ Error initialising MarkerExtractor: {exc}\n{tb}")
# Define the custom configuration for HF LLM.
#def get_config_dict(self, model_id: str, llm_service=MarkerOpenAIService, output_format: Optional[str] = "markdown" ) -> Dict[str, Any]:
def get_config_dict(self, ) -> Dict[str, Any]:
""" Define the custom configuration for the Hugging Face LLM: combining Markers cli_options and LLM. """
try:
## LLM Enable higher quality processing. ## See MarkerOpenAIService,
##llm_service = llm_service.removeprefix("<class '").removesuffix("'>") # e.g <class 'marker.services.openai.OpenAIService'>
#llm_service = str(llm_service).split("'")[1] ## SMY: split and slicing
self.use_llm = self.use_llm[0] if isinstance(self.use_llm, tuple) else self.use_llm
self.page_range = self.page_range[0] if isinstance(self.page_range, tuple) else self.page_range #if isinstance(self.page_range, str) else None, ##SMY: passing as hint type tuple!
##SMY: TODO: convert to {inputs} and called from gradio_ui
if not self.use_llm or self.use_llm == 'False':
config_dict = {
"output_format" : self.output_format, #"markdown",
#"openai_model" : self.model_id, #self.client.model_id, #"model_name"
#"openai_api_key" : self.openai_api_key, #self.client.openai_api_key, #self.api_token,
#"openai_base_url": self.openai_base_url, #self.client.base_url, #self.base_url,
#"temperature" : self.temperature, #self.client.temperature,
#"top_p" : self.top_p, #self.client.top_p,
#"openai_image_format": self.openai_image_format, #"webp", #"png" #better compatibility
"pdftext_workers": self.max_workers, ## number of workers to use for pdftext."
#"max_retries" : self.max_retries, #3, ## pass to __call__
"debug" : self.debug,
"output_dir" : self.output_dir,
#"use_llm" : self.use_llm, #False, #True,
"force_ocr" : self.force_ocr, #False,
"strip_existing_ocr": self.strip_existing_ocr, #False
"disable_ocr_math": self.disable_ocr_math,
"page_range" : self.page_range, ##debug #len(pdf_file)
}
else:
config_dict = {
"output_format" : self.output_format, #"markdown",
"openai_model" : self.model_id, #self.client.model_id, #"model_name"
"openai_api_key" : self.openai_api_key, #self.client.openai_api_key, #self.api_token,
"openai_base_url": self.openai_base_url, #self.client.base_url, #self.base_url,
"temperature" : self.temperature, #self.client.temperature,
"top_p" : self.top_p, #self.client.top_p,
"openai_image_format": self.openai_image_format, #"webp", #"png" #better compatibility
"pdftext_workers": self.max_workers, ## number of workers to use for pdftext."
#"max_retries" : self.max_retries, #3, ## pass to __call__
"debug" : self.debug,
"output_dir" : self.output_dir,
"use_llm" : self.use_llm, #False, #True,
"force_ocr" : self.force_ocr, #False,
"strip_existing_ocr": self.strip_existing_ocr, #False
"disable_ocr_math": self.disable_ocr_math,
"page_range" : self.page_range, ##debug #len(pdf_file)
}
return config_dict
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"✗ Error configuring custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"✗ Error configuring custom config_dict: {exc}\n{tb}") #").with_traceback(tb)
#raise
|