parserPDF / ui /gradio_process.py
semmyk's picture
baseline08_beta0.4.1_07Oct25: fix permissions: oauth inference-api, write output markdown
15e9c77
# ui/gradio_process.py
from re import Match
from unittest import result
import gradio as gr
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
from tqdm import tqdm
import time
from pathlib import Path, WindowsPath
from typing import Optional, Union, Literal #, Dict, List, Any, Tuple
from huggingface_hub import get_token
import spaces ##HuggingFace spaces to accelerate GPU support on HF Spaces
#import utilities, helpers
#import utils.file_utils
from utils.file_utils import zip_processed_files, process_dicts_data, create_temp_folder #, collect_pdf_paths, collect_html_paths, collect_markdown_paths, create_outputdir ## should move to handling file
from utils.config import TITLE, DESCRIPTION, DESCRIPTION_PDF_HTML, DESCRIPTION_PDF, DESCRIPTION_HTML, DESCRIPTION_MD #, file_types_list, file_types_tuple
from utils.utils import is_dict, is_list_of_dicts
from utils.get_config import get_config_value
from llm.llm_login import get_login_token, is_loggedin_huggingface, login_huggingface
from converters.extraction_converter import DocumentConverter as docconverter #DocumentExtractor #as docextractor
from converters.pdf_to_md import PdfToMarkdownConverter #, init_worker
#from converters.md_to_pdf import MarkdownToPdfConverter ##SMY: PENDING: implementation
import traceback ## Extract, format and print information about Python stack traces.
from utils.logger import get_logger
logger = get_logger(__name__) ##NB: setup_logging() ## set logging
# Instantiate converters class once – they are stateless
pdf2md_converter = PdfToMarkdownConverter()
#md2pdf_converter = MarkdownToPdfConverter()
# User eXperience: Load Marker models ahead of time if not already loaded in reload mode
## SMY: 29Sept2025 - Came across https://github.com/xiaoyao9184/docker-marker/tree/master/gradio
from converters.extraction_converter import load_models
from globals import config_load_models
try:
if not config_load_models.model_dict:
model_dict = load_models()
config_load_models.model_dict = model_dict
'''if 'model_dict' not in globals():
global model_dict
model_dict = load_models()'''
logger.log(level=30, msg="Config_load_model: ", extra={"model_dict": str(model_dict)})
except Exception as exc:
#tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"βœ— Error loading models (reload): {exc}") #\n{tb}")
raise RuntimeError(f"βœ— Error loading models (reload): {exc}") #\n{tb}")
#def get_login_token( api_token_arg, oauth_token: gr.OAuthToken | None=None,): ##moved to llm_login
#duration = 5.75 * pdf_files_count if pdf_files_count>=2 else 7
#@spaces.GPU(duration=duration) ## HF Spaces GPU support
def get_results_files_conversion(pdf_files, pdf_files_count, progress2=gr.Progress(track_tqdm=True)):
#Use progress.tqdm to integrate with the executor map
results = []
#for result_interim in progress2.tqdm(
for i, pdf_file in enumerate(iterable=progress2.tqdm(
iterable=pdf_files, #, max_retries), total=len(pdf_files)
desc=f"Processing file conversion ... pool.map",
total=pdf_files_count)
):
result_interim = pdf2md_converter.convert_files(pdf_file)
# Update the Gradio UI to improve user-friendly eXperience
#yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)}[:20]]", {"process": "Processing files ..."}, f"dummy_log.log"
progress2((i,pdf_files_count), desc=f"Processing file conversion result: {i}: {str(pdf_file)} : [{str(result_interim)[:20]}]")
#progress2((10,16), desc=f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)}[:20]]")
time.sleep(0.75) #.sleep(0.25)
results.append(result_interim)
return results
def get_results_files_conversion_with_pool(pdf_files, pdf_files_count, max_workers: int, progress2=gr.Progress(track_tqdm=True)):
#Use progress.tqdm to integrate with the executor map
results = []
try:
# Create a pool with init_worker initialiser
##SMY: dropped ProcessPoolExecutor due to slow Marker conversion.Marker already leverage ThreadPoolExecutor and ProcessPoolExecutor
with ProcessPoolExecutor(
max_workers=max_workers,
) as pool:
logger.log(level=30, msg="Initialising ProcessPoolExecutor: pool:", extra={"pdf_files": pdf_files[:3], "files_len": len(pdf_files), "progress": str(progress2),})
progress2((10,16), desc=f"Starting ProcessPool queue: Processing Files ...")
time.sleep(0.25)
# Map the files (pdf_files) to the conversion function (pdf2md_converter.convert_file)
#try:
#yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log"
# progress((9,16), desc=f"ProcessPoolExecutor: Pooling file conversion ...")
# time.sleep(0.25)
# yield gr.update(interactive=False), f"ProcessPoolExecutor: Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log"
# Use progress.tqdm to integrate with the executor mapresults = pool.map(pdf2md_converter.convert_files, pdf_files) ##SMY iterables #max_retries #output_dir_string)
for i, result_interim in enumerate(progress2.tqdm(
iterable=pool.map(pdf2md_converter.convert_files, pdf_files), #, max_retries), total=len(pdf_files)
desc="ProcessPoolExecutor: Pooling file conversion ...",
total=pdf_files_count, unit="files")
):
results.append(result_interim)
# Update the Gradio UI to improve user-friendly eXperience
yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]", {"process": "Processing files ..."}, f"dummy_log.log"
#progress((10,16), desc=f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)[:20]}]")
progress2((i, pdf_files_count), desc=f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]")
time.sleep(0.25)
except Exception as exc:
# Raise the exception to stop the Gradio app: exception to halt execution
logger.exception("Error during pooling file conversion", exc_info=True) # Log the full traceback
tbp = traceback.print_exc() # Print the exception traceback
# Update the Gradio UI to improve user-friendly eXperience
yield gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log" ## return the exception message
return [gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log"] ## return the exception message
##======
return results
def get_results_files_conversion_with_pool_ascomplete(pdf_files, pdf_files_count, max_workers: int, progress2=gr.Progress(track_tqdm=True)):
"""
This function wraps the as_completed call to process results
as they become available.
"""
#Use progress.tqdm to integrate with the executor map
results = []
try:
# Create a pool with init_worker initialiser
##SMY: dropped ProcessPoolExecutor due to slow Marker conversion.Marker already leverage ThreadPoolExecutor and ProcessPoolExecutor
with ProcessPoolExecutor(
max_workers=max_workers,
) as pool:
logger.log(level=30, msg="Initialising ProcessPoolExecutor: pool:", extra={"pdf_files": pdf_files, "files_len": len(pdf_files), "progress": str(progress2)}) #pdf_files_count
progress2((10,16), desc=f"Starting ProcessPool queue: Processing Files ...")
time.sleep(0.25)
# Submit each task individually and collect the futures
futures = [pool.submit(pdf2md_converter.convert_files, file) for file in pdf_files]
# Use progress.tqdm to integrate with the executor mapresults = pool.map(pdf2md_converter.convert_files, pdf_files) ##SMY iterables #max_retries #output_dir_string)
for i, future in enumerate(progress2.tqdm(
iterable=as_completed(futures), #pdf_files,
desc="ProcessPoolExecutor: Pooling file conversion ...",
total=pdf_files_count, unit="files")
):
result_interim = future.result()
results.append(result_interim)
# Update the Gradio UI to improve user-friendly eXperience
yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]", {"process": "Processing files ..."}, f"dummy_log.log"
#progress((10,16), desc=f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)[:20]}]")
progress2((i, pdf_files_count), desc=f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]")
time.sleep(0.25)
except Exception as exc:
# Raise the exception to stop the Gradio app: exception to halt execution
logger.exception("Error during pooling file conversion", exc_info=True) # Log the full traceback
tbp = traceback.print_exc() # Print the exception traceback
# Update the Gradio UI to improve user-friendly eXperience
yield gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log" ## return the exception message
return [gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log"] ## return the exception message
##======
return results
##SMY: TODO: future: refactor to gradio_process.py and
## pull options to cli-options{"output_format":, "output_dir_string":, "use_llm":, "page_range":, "force_ocr":, "debug":, "strip_existing_ocr":, "disable_ocr_math""}
#@spaces.GPU
def convert_batch(
pdf_files, #: list[str],
pdf_files_count: int,
provider: str,
model_id: str,
#base_url: str
hf_provider: str,
endpoint: str,
backend_choice: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
stream: bool,
api_token_gr: str,
#max_workers: int,
#max_retries: int,
openai_base_url: str = "https://router.huggingface.co/v1",
openai_image_format: Optional[str] = "webp",
max_workers: Optional[int] = 1, #4,
max_retries: Optional[int] = 2,
debug: bool = False, #Optional[bool] = False, #True,
#output_format: str = "markdown",
output_format: Literal["markdown", "json", "html"] = "markdown",
#output_dir: Optional[Union[str, Path]] = "output_dir",
output_dir_string: str = "output_dir_default",
use_llm: bool = False, #Optional[bool] = False, #True,
force_ocr: bool = True, #Optional[bool] = False,
strip_existing_ocr: Optional[bool] = None, #bool = False,
disable_ocr_math: Optional[bool] = None, #bool = False,
page_range: str = None, #Optional[str] = None,
weasyprint_dll_directories: str = None, #weasyprint_libpath
tz_hours: str = None,
pooling: str = "no_pooling", #bool = True,
oauth_token: gr.OAuthToken | None=None,
progress: gr.Progress = gr.Progress(track_tqdm=True), #Progress tracker to keep tab on pool queue executor
progress1: gr.Progress = gr.Progress(),
#progress2: gr.Progress = gr.Progress(track_tqdm=True),
): #-> str:
"""
Handles the conversion process using multiprocessing.
Spins up a pool and converts all uploaded files in parallel.
Aggregates per-file logs into one string.
Receives Gradio component values, starting with the list of uploaded file paths
"""
# login: Update the Gradio UI to improve user-friendly eXperience - commencing
# [template]: #outputs=[process_button, log_output, files_individual_JSON, files_individual_downloads],
yield gr.update(interactive=False), f"Commencing Processing ... Getting login", {"process": "Commencing Processing"}, f"dummy_log.log"
progress((0,16), f"Commencing Processing ...")
time.sleep(0.25)
# get token from logged-in user:
api_token = get_login_token(api_token_arg=api_token_gr, oauth_token=oauth_token)
##SMY: Strictly debug. Must not be live
#logger.log(level=30, msg="Commencing: get_login_token", extra={"api_token": api_token, "api_token_gr": api_token_gr})
'''try:
##SMY: might deprecate. To replace with oauth login from Gradio ui or integrate cleanly.
#login_huggingface(api_token) ## attempt login if not already logged in. NB: HF CLI login prompt would not display in Process Worker.
if is_loggedin_huggingface() and (api_token is None or api_token == ""):
api_token = get_token() ##SMY: might be redundant
elif is_loggedin_huggingface() is False and api_token:
login_huggingface(api_token)
# login: Update the Gradio UI to improve user-friendly eXperience
#yield gr.update(interactive=False), f"login to HF: Processing files...", {"process": "Processing files"}, f"dummy_log.log"
else:
pass
# login: Update the Gradio UI to improve user-friendly eXperience
#yield gr.update(interactive=False), f"Not logged in to HF: Processing files...", {"process": "Processing files"}, f"dummy_log.log"
except Exception as exc: # Catch all exceptions
tb = traceback.format_exc()
logger.exception(f"βœ— Error during login_huggingface β†’ {exc}\n{tb}", exc_info=True) # Log the full traceback
return [gr.update(interactive=True), f"βœ— An error occurred during login_huggingface β†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"] # return the exception message
'''
progress((1,16), desc=f"Log in: {is_loggedin_huggingface(api_token)}")
time.sleep(0.25)
## debug
#logger.log(level=30, msg="pdf_files_inputs", extra={"input_arg[0]:": pdf_files[0]})
#if not files:
if not pdf_files or pdf_files is None: ## Check if files is None. This handles the case where no files are uploaded.
logger.log(level=30, msg="Initialising ProcessPool: No files uploaded.", extra={"pdf_files": pdf_files, "files_len": pdf_files_count})
#outputs=[log_output, files_individual_JSON, files_individual_downloads],
return [gr.update(interactive=True), "Initialising ProcessPool: No files uploaded.", {"Upload":"No files uploaded"}, f"dummy_log.log"]
progress((2,16), desc=f"Getting configuration values")
time.sleep(0.25)
# Get config values if not provided
#config_file = find_file("config.ini") ##from file_handler.file_utils ##takes a bit of time to process. #NeedOptimise
config_file = Path("utils") / "config.ini" ##SMY: speed up sacrificing flexibility
model_id = model_id if model_id else get_config_value(config_file, "MARKER_CAP", "MODEL_ID")
openai_base_url = openai_base_url if openai_base_url else get_config_value(config_file, "MARKER_CAP", "OPENAI_BASE_URL")
openai_image_format = openai_image_format if openai_image_format else get_config_value(config_file, "MARKER_CAP", "OPENAI_IMAGE_FORMAT")
max_workers = max_workers if max_workers else get_config_value(config_file, "MARKER_CAP", "MAX_WORKERS")
max_retries = max_retries if max_retries else get_config_value(config_file, "MARKER_CAP", "MAX_RETRIES")
output_format = output_format if output_format else get_config_value(config_file, "MARKER_CAP", "OUTPUT_FORMAT")
output_dir_string = output_dir_string if output_dir_string else str(get_config_value(config_file, "MARKER_CAP", "OUTPUT_DIR"))
use_llm = use_llm if use_llm else get_config_value(config_file, "MARKER_CAP", "USE_LLM")
page_range = page_range if page_range else get_config_value(config_file,"MARKER_CAP", "PAGE_RANGE")
weasyprint_dll_directories= weasyprint_dll_directories if weasyprint_dll_directories else None
config_load_models.weasyprint_libpath = weasyprint_dll_directories ## Assign user's weasyprint path to Global var
config_load_models.pdf_files_count = pdf_files_count
#pooling = True ##SMY: placeholder
progress((3,16), desc=f"Retrieved configuration values")
time.sleep(0.25)
# Create the initargs tuple from the Gradio inputs: # 'files' is an iterable, and handled separately.
yield gr.update(interactive=False), f"Setting global variables : Initialising init_args", {"process": "Processing files ..."}, f"dummy_log.log"
progress((4,16), desc=f"Setting global variables : Initialiasing init_args")
time.sleep(0.25)
#init_args = ( ...
# set global variables
from globals import config_load
#self.pdf_files_count: int = 0
config_load.provider = provider
config_load.model_id = model_id
config_load.hf_provider = hf_provider
config_load.endpoint = endpoint
config_load.backend_choice = backend_choice
config_load.system_message = system_message
config_load.max_tokens = max_tokens
config_load.temperature = temperature
config_load.top_p = top_p
config_load.stream = stream
config_load.api_token = api_token
config_load.openai_base_url = openai_base_url
config_load.openai_image_format = openai_image_format
config_load.max_workers = max_workers
config_load.max_retries = max_retries
config_load.debug = debug
#output_format: str = "markdown",
config_load.output_format = output_format
config_load.output_dir_string = output_dir_string
config_load.use_llm = use_llm
config_load.force_ocr = force_ocr
config_load.strip_existing_ocr = strip_existing_ocr
config_load.disable_ocr_math = disable_ocr_math
config_load.page_range = page_range
#config_load.weasyprint_dll_directories: str = None,
config_load.tz_hours = tz_hours
config_load.pooling = pooling ## placeholder for ProcessPoolExecutor flag
# 1. create output_dir
try:
yield gr.update(interactive=False), f"Creating output_dir ...", {"process": "Processing files ..."}, f"dummy_log.log"
progress((5,16), desc=f"ProcessPoolExecutor: Creating output_dir")
time.sleep(0.25)
#pdf2md_converter.output_dir_string = output_dir_string ##SMY: attempt setting directly to resolve pool.map iterable
# Create Marker output_dir in temporary directory where Gradio can access it. #file_utils.
output_dir = create_temp_folder(output_dir_string)
#pdf2md_converter.output_dir = output_dir ##SMY should now redirect to globals
config_load.output_dir = output_dir
logger.info(f"βœ“ output_dir created: ", extra={"output_dir": config_load.output_dir.name, "in": str(config_load.output_dir.parent)})
yield gr.update(interactive=False), f"Created output_dir ...", {"process": "Processing files ..."}, f"dummy_log.log"
progress((6,16), desc=f"βœ“ Created output_dir.")
time.sleep(0.25)
except Exception as exc:
tb = traceback.format_exc()
tbp = traceback.print_exc() # Print the exception traceback
logger.exception("βœ— error creating output_dir β†’ {exc}\n{tb}", exc_info=True) # Log the full traceback
# Update the Gradio UI to improve user-friendly eXperience
yield gr.update(interactive=True), f"βœ— An error occurred creating output_dir: {str(exc)}", {"Error":f"Error: {exc}"}, f"dummy_log.log" ## return the exception message
return f"An error occurred creating output_dir: {str(exc)}", f"Error: {exc}", f"Error: {exc}" ## return the exception message
# 2. Process file conversion leveraging ProcessPoolExecutor for efficiency
results = [] ## Processed files result holder
logger.log(level=30, msg="Initialising Processing Files ...", extra={"pdf_files": pdf_files, "files_len": len(pdf_files), "model_id": model_id, "output_dir": output_dir_string}) #pdf_files_count
yield gr.update(interactive=False), f"Initialising Processing Files ...", {"process": "Processing files ..."}, f"dummy_log.log"
progress((7,16), desc=f"Initialising Processing Files ...")
time.sleep(0.25)
try:
#yield gr.update(interactive=True), f"Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log"
progress((8,16), desc=f"Pooling file conversion ...")
time.sleep(0.25)
yield gr.update(interactive=False), f"Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log"
##SMY: Future: users choose sequential or pooling from Gradio ui
match pooling:
case "no_pooling":
results = get_results_files_conversion(pdf_files, pdf_files_count,progress)
case "pooling":
results = get_results_files_conversion_with_pool(pdf_files, pdf_files_count, max_workers, progress)
case "as_completed":
results = get_results_files_conversion_with_pool_ascomplete(pdf_files, pdf_files_count, max_workers, progress)
logger.log(level=30, msg="Got Results from files conversion: ", extra={"results": str(results)[:20]})
yield gr.update(interactive=True), f"Got Results from files conversion: [{str(results)[:20]}]", {"process": "Processing files ..."}, f"dummy_log.log"
progress((9,16), desc=f"Got Results from files conversion")
time.sleep(0.25)
except Exception as exc:
tb = traceback.format_exc()
logger.exception(f"βœ— Error during Files processing β†’ {exc}\n{tb}" , exc_info=True) # Log the full traceback
#traceback.print_exc() # Print the exception traceback
yield gr.update(interactive=True), f"βœ— An error occurred during Files Processing β†’ {exc}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message
return [gr.update(interactive=True), f"βœ— An error occurred during files processing β†’ {exc}", {"Error":f"Error: {exc}"}, f"dummy_log.log"]
# 3. Process file conversion results
try:
logger.log(level=20, msg="ProcessPoolExecutor pool result:", extra={"results": str(results)})
progress((12,16), desc="Processing results from files conversion") ##rekickin
time.sleep(0.25)
logs = []
logs_files_images = []
#logs.extend(results) ## performant pythonic
#logs = list[results] ##
logs = [result for result in results] ## pythonic list comprehension
# [template] ## logs : [file , images , filepath, image_path]
#logs_files_images = logs_files.extend(logs_images) #zip(logs_files, logs_images) ##SMY: in progress
logs_count = 0
#for log in logs:
for i, log in enumerate(logs):
logs_files_images.append(log.get("filepath") if is_dict(log) or is_list_of_dicts(logs) else "Error or no file_path") # isinstance(log, (dict, str))
logs_files_images.extend(list(image for image in log.get("image_path", "Error or no image_path")))
i_image_count = log.get("images", 0)
# Update the Gradio UI to improve user-friendly eXperience
#yield gr.update(interactive=False), f"Processing files: {logs_files_images[logs_count]}", {"process": "Processing files"}, f"dummy_log.log"
progress1(0.7, desc=f"Processing result log {i}: {str(log)}")
logs_count = i+i_image_count
except Exception as exc:
tbp = traceback.print_exc() # Print the exception traceback
logger.exception("Error during processing results logs β†’ {exc}\n{tbp}", exc_info=True) # Log the full traceback
return [gr.update(interactive=True), f"An error occurred during processing results logs: {str(exc)}\n{tbp}", {"Error":f"Error: {exc}"}, f"dummy_log.log"] ## return the exception message
#yield gr.update(interactive=True), f"An error occurred during processing results logs: {str(exc)}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" ## return the exception message
# 4. Zip Processed Files and images. Insert to first index
try: ##from file_handler.file_utils
progress((13,16), desc="Zipping processed files and images")
time.sleep(0.25)
zipped_processed_files = zip_processed_files(root_dir=f"{output_dir}", file_paths=logs_files_images, tz_hours=tz_hours, date_format='%d%b%Y_%H-%M-%S') #date_format='%d%b%Y'
logs_files_images.insert(0, zipped_processed_files)
#yield gr.update(interactive=False), f"Processing zip and files: {logs_files_images}", {"process": "Processing files"}, f"dummy_log.log"
progress((14,16), desc="Zipped processed files and images")
time.sleep(0.25)
except Exception as exc:
tb = traceback.format_exc()
logger.exception(f"βœ— Error during zipping processed files β†’ {exc}\n{tb}" , exc_info=True) # Log the full traceback
#traceback.print_exc() # Print the exception traceback
yield gr.update(interactive=True), f"βœ— An error occurred during zipping files β†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message
return gr.update(interactive=True), f"βœ— An error occurred during zipping files β†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message
# 5. Return processed files log
try:
progress((15,16), desc="Formatting processed log results")
time.sleep(0.25)
## # Convert logs list of dicts to formatted json stringutils.file_utils.
logs_return_formatted_json_string = process_dicts_data(logs) #"\n".join(log for log in logs) ##SMY outputs to gr.JSON component with no need for json.dumps(data, indent=)
#logs_files_images_return = "\n".join(path for path in logs_files_images) ##TypeError: sequence item 0: expected str instance, WindowsPath found
## # Convert any Path objects to strings, but leave strings as-is
logs_files_images_return = list(str(path) if isinstance(path, Path) else path for path in logs_files_images)
logger.log(level=20, msg="File conversion complete. Sending outcome to Gradio:", extra={"logs_files_image_return": str(logs_files_images_return)}) ## debug: FileNotFoundError: [WinError 2] The system cannot find the file specified: 'Error or no image_path'
progress((16,16), desc="Complete processing and formatting file processing results")
time.sleep(0.25)
# [templates]
#outputs=[process_button, log_output, files_individual_JSON, files_individual_downloads],
#return "\n".join(logs), "\n".join(logs_files_images) #"\n".join(logs_files)
yield gr.update(interactive=True), gr.update(value=logs_return_formatted_json_string), gr.update(value=logs_return_formatted_json_string, visible=True), gr.update(value=logs_files_images_return, visible=True) ##SMY: redundant
return [gr.update(interactive=True), gr.update(value=logs_return_formatted_json_string), gr.update(value=logs_return_formatted_json_string, visible=True), gr.update(value=logs_files_images_return, visible=True)]
#yield gr.update(interactive=True), logs_return_formatted_json_string, logs_return_formatted_json_string, logs_files_images_return
#return [gr.update(interactive=True), logs_return_formatted_json_string, logs_return_formatted_json_string, logs_files_images_return]
except Exception as exc:
tb = traceback.format_exc()
logger.exception(f"βœ— Error during returning result logs β†’ {exc}\n{tb}" , exc_info=True) # Log the full traceback
#traceback.print_exc() # Print the exception traceback
yield gr.update(interactive=True), f"βœ— An error occurred during returning result logsβ†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message
return [gr.update(interactive=True), f"βœ— An error occurred during returning result logsβ†’ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"] # return the exception message
#return "\n".join(log for log in logs), "\n".join(str(path) for path in logs_files_images)
#print(f'logs_files_images: {"\n".join(str(path) for path in logs_files_images)}')
## SMY: to be implemented/refactored AND moved to logic file
'''
def convert_md_to_pdf(file: gr.File | None, folder: str | None) -> list[gr.File]:
"""
Gradio callback for Markdown β†’ PDF.
Returns a list of generated PDF files (as Gradio File objects).
"""
if not file and not folder:
return []
md_paths = []
# Single file
if file:
md_path = Path(file.name)
md_paths.append(md_path)
# Folder
if folder:
try:
md_paths.extend(collect_markdown_paths(folder))
except Exception as exc:
logger.exception("Folder traversal failed.")
return []
if not md_paths:
return []
output_dir = Path("./generated_pdfs")
output_dir.mkdir(exist_ok=True)
pdf_files = md2pdf_converter.batch_convert(md_paths, output_dir)
# Convert to Gradio File objects
gr_files = [gr.File(path=str(p)) for p in pdf_files]
return gr_files
'''
##====================
#Gradio interface moved to gradio_ui.py
#def build_interface() -> gr.Blocks:
# """
# Assemble the Gradio Blocks UI.
# """
if __name__ == '__name__':
convert_batch()