# ui/gradio_process.py from re import Match from unittest import result import gradio as gr from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed from tqdm import tqdm import time from pathlib import Path, WindowsPath from typing import Optional, Union, Literal #, Dict, List, Any, Tuple from huggingface_hub import get_token import spaces ##HuggingFace spaces to accelerate GPU support on HF Spaces #import utilities, helpers #import utils.file_utils from utils.file_utils import zip_processed_files, process_dicts_data, create_temp_folder #, collect_pdf_paths, collect_html_paths, collect_markdown_paths, create_outputdir ## should move to handling file from utils.config import TITLE, DESCRIPTION, DESCRIPTION_PDF_HTML, DESCRIPTION_PDF, DESCRIPTION_HTML, DESCRIPTION_MD #, file_types_list, file_types_tuple from utils.utils import is_dict, is_list_of_dicts from utils.get_config import get_config_value from llm.llm_login import get_login_token, is_loggedin_huggingface, login_huggingface from converters.extraction_converter import DocumentConverter as docconverter #DocumentExtractor #as docextractor from converters.pdf_to_md import PdfToMarkdownConverter #, init_worker #from converters.md_to_pdf import MarkdownToPdfConverter ##SMY: PENDING: implementation import traceback ## Extract, format and print information about Python stack traces. from utils.logger import get_logger logger = get_logger(__name__) ##NB: setup_logging() ## set logging # Instantiate converters class once – they are stateless pdf2md_converter = PdfToMarkdownConverter() #md2pdf_converter = MarkdownToPdfConverter() # User eXperience: Load Marker models ahead of time if not already loaded in reload mode ## SMY: 29Sept2025 - Came across https://github.com/xiaoyao9184/docker-marker/tree/master/gradio from converters.extraction_converter import load_models from globals import config_load_models try: if not config_load_models.model_dict: model_dict = load_models() config_load_models.model_dict = model_dict '''if 'model_dict' not in globals(): global model_dict model_dict = load_models()''' logger.log(level=30, msg="Config_load_model: ", extra={"model_dict": str(model_dict)}) except Exception as exc: #tb = traceback.format_exc() #exc.__traceback__ logger.exception(f"✗ Error loading models (reload): {exc}") #\n{tb}") raise RuntimeError(f"✗ Error loading models (reload): {exc}") #\n{tb}") #def get_login_token( api_token_arg, oauth_token: gr.OAuthToken | None=None,): ##moved to llm_login #duration = 5.75 * pdf_files_count if pdf_files_count>=2 else 7 #@spaces.GPU(duration=duration) ## HF Spaces GPU support def get_results_files_conversion(pdf_files, pdf_files_count, progress2=gr.Progress(track_tqdm=True)): #Use progress.tqdm to integrate with the executor map results = [] #for result_interim in progress2.tqdm( for i, pdf_file in enumerate(iterable=progress2.tqdm( iterable=pdf_files, #, max_retries), total=len(pdf_files) desc=f"Processing file conversion ... pool.map", total=pdf_files_count) ): result_interim = pdf2md_converter.convert_files(pdf_file) # Update the Gradio UI to improve user-friendly eXperience #yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)}[:20]]", {"process": "Processing files ..."}, f"dummy_log.log" progress2((i,pdf_files_count), desc=f"Processing file conversion result: {i}: {str(pdf_file)} : [{str(result_interim)[:20]}]") #progress2((10,16), desc=f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)}[:20]]") time.sleep(0.75) #.sleep(0.25) results.append(result_interim) return results def get_results_files_conversion_with_pool(pdf_files, pdf_files_count, max_workers: int, progress2=gr.Progress(track_tqdm=True)): #Use progress.tqdm to integrate with the executor map results = [] try: # Create a pool with init_worker initialiser ##SMY: dropped ProcessPoolExecutor due to slow Marker conversion.Marker already leverage ThreadPoolExecutor and ProcessPoolExecutor with ProcessPoolExecutor( max_workers=max_workers, ) as pool: logger.log(level=30, msg="Initialising ProcessPoolExecutor: pool:", extra={"pdf_files": pdf_files[:3], "files_len": len(pdf_files), "progress": str(progress2),}) progress2((10,16), desc=f"Starting ProcessPool queue: Processing Files ...") time.sleep(0.25) # Map the files (pdf_files) to the conversion function (pdf2md_converter.convert_file) #try: #yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log" # progress((9,16), desc=f"ProcessPoolExecutor: Pooling file conversion ...") # time.sleep(0.25) # yield gr.update(interactive=False), f"ProcessPoolExecutor: Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log" # Use progress.tqdm to integrate with the executor mapresults = pool.map(pdf2md_converter.convert_files, pdf_files) ##SMY iterables #max_retries #output_dir_string) for i, result_interim in enumerate(progress2.tqdm( iterable=pool.map(pdf2md_converter.convert_files, pdf_files), #, max_retries), total=len(pdf_files) desc="ProcessPoolExecutor: Pooling file conversion ...", total=pdf_files_count, unit="files") ): results.append(result_interim) # Update the Gradio UI to improve user-friendly eXperience yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]", {"process": "Processing files ..."}, f"dummy_log.log" #progress((10,16), desc=f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)[:20]}]") progress2((i, pdf_files_count), desc=f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]") time.sleep(0.25) except Exception as exc: # Raise the exception to stop the Gradio app: exception to halt execution logger.exception("Error during pooling file conversion", exc_info=True) # Log the full traceback tbp = traceback.print_exc() # Print the exception traceback # Update the Gradio UI to improve user-friendly eXperience yield gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log" ## return the exception message return [gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log"] ## return the exception message ##====== return results def get_results_files_conversion_with_pool_ascomplete(pdf_files, pdf_files_count, max_workers: int, progress2=gr.Progress(track_tqdm=True)): """ This function wraps the as_completed call to process results as they become available. """ #Use progress.tqdm to integrate with the executor map results = [] try: # Create a pool with init_worker initialiser ##SMY: dropped ProcessPoolExecutor due to slow Marker conversion.Marker already leverage ThreadPoolExecutor and ProcessPoolExecutor with ProcessPoolExecutor( max_workers=max_workers, ) as pool: logger.log(level=30, msg="Initialising ProcessPoolExecutor: pool:", extra={"pdf_files": pdf_files, "files_len": len(pdf_files), "progress": str(progress2)}) #pdf_files_count progress2((10,16), desc=f"Starting ProcessPool queue: Processing Files ...") time.sleep(0.25) # Submit each task individually and collect the futures futures = [pool.submit(pdf2md_converter.convert_files, file) for file in pdf_files] # Use progress.tqdm to integrate with the executor mapresults = pool.map(pdf2md_converter.convert_files, pdf_files) ##SMY iterables #max_retries #output_dir_string) for i, future in enumerate(progress2.tqdm( iterable=as_completed(futures), #pdf_files, desc="ProcessPoolExecutor: Pooling file conversion ...", total=pdf_files_count, unit="files") ): result_interim = future.result() results.append(result_interim) # Update the Gradio UI to improve user-friendly eXperience yield gr.update(interactive=True), f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]", {"process": "Processing files ..."}, f"dummy_log.log" #progress((10,16), desc=f"ProcessPoolExecutor: Pooling file conversion result: [{str(result_interim)[:20]}]") progress2((i, pdf_files_count), desc=f"ProcessPoolExecutor: Pooling file conversion result: {i} : [{str(result_interim)[:20]}]") time.sleep(0.25) except Exception as exc: # Raise the exception to stop the Gradio app: exception to halt execution logger.exception("Error during pooling file conversion", exc_info=True) # Log the full traceback tbp = traceback.print_exc() # Print the exception traceback # Update the Gradio UI to improve user-friendly eXperience yield gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log" ## return the exception message return [gr.update(interactive=True), f"An error occurred during pool.map: {str(exc)}", {"Error":f"Error: {exc}\n{tbp}"}, f"dummy_log.log"] ## return the exception message ##====== return results ##SMY: TODO: future: refactor to gradio_process.py and ## pull options to cli-options{"output_format":, "output_dir_string":, "use_llm":, "page_range":, "force_ocr":, "debug":, "strip_existing_ocr":, "disable_ocr_math""} #@spaces.GPU def convert_batch( pdf_files, #: list[str], pdf_files_count: int, provider: str, model_id: str, #base_url: str hf_provider: str, endpoint: str, backend_choice: str, system_message: str, max_tokens: int, temperature: float, top_p: float, stream: bool, api_token_gr: str, #max_workers: int, #max_retries: int, openai_base_url: str = "https://router.huggingface.co/v1", openai_image_format: Optional[str] = "webp", max_workers: Optional[int] = 1, #4, max_retries: Optional[int] = 2, debug: bool = False, #Optional[bool] = False, #True, #output_format: str = "markdown", output_format: Literal["markdown", "json", "html"] = "markdown", #output_dir: Optional[Union[str, Path]] = "output_dir", output_dir_string: str = "output_dir_default", use_llm: bool = False, #Optional[bool] = False, #True, force_ocr: bool = True, #Optional[bool] = False, strip_existing_ocr: Optional[bool] = None, #bool = False, disable_ocr_math: Optional[bool] = None, #bool = False, page_range: str = None, #Optional[str] = None, weasyprint_dll_directories: str = None, #weasyprint_libpath tz_hours: str = None, pooling: str = "no_pooling", #bool = True, oauth_token: gr.OAuthToken | None=None, progress: gr.Progress = gr.Progress(track_tqdm=True), #Progress tracker to keep tab on pool queue executor progress1: gr.Progress = gr.Progress(), #progress2: gr.Progress = gr.Progress(track_tqdm=True), ): #-> str: """ Handles the conversion process using multiprocessing. Spins up a pool and converts all uploaded files in parallel. Aggregates per-file logs into one string. Receives Gradio component values, starting with the list of uploaded file paths """ # login: Update the Gradio UI to improve user-friendly eXperience - commencing # [template]: #outputs=[process_button, log_output, files_individual_JSON, files_individual_downloads], yield gr.update(interactive=False), f"Commencing Processing ... Getting login", {"process": "Commencing Processing"}, f"dummy_log.log" progress((0,16), f"Commencing Processing ...") time.sleep(0.25) # get token from logged-in user: api_token = get_login_token(api_token_arg=api_token_gr, oauth_token=oauth_token) ##SMY: Strictly debug. Must not be live #logger.log(level=30, msg="Commencing: get_login_token", extra={"api_token": api_token, "api_token_gr": api_token_gr}) '''try: ##SMY: might deprecate. To replace with oauth login from Gradio ui or integrate cleanly. #login_huggingface(api_token) ## attempt login if not already logged in. NB: HF CLI login prompt would not display in Process Worker. if is_loggedin_huggingface() and (api_token is None or api_token == ""): api_token = get_token() ##SMY: might be redundant elif is_loggedin_huggingface() is False and api_token: login_huggingface(api_token) # login: Update the Gradio UI to improve user-friendly eXperience #yield gr.update(interactive=False), f"login to HF: Processing files...", {"process": "Processing files"}, f"dummy_log.log" else: pass # login: Update the Gradio UI to improve user-friendly eXperience #yield gr.update(interactive=False), f"Not logged in to HF: Processing files...", {"process": "Processing files"}, f"dummy_log.log" except Exception as exc: # Catch all exceptions tb = traceback.format_exc() logger.exception(f"✗ Error during login_huggingface → {exc}\n{tb}", exc_info=True) # Log the full traceback return [gr.update(interactive=True), f"✗ An error occurred during login_huggingface → {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"] # return the exception message ''' progress((1,16), desc=f"Log in: {is_loggedin_huggingface(api_token)}") time.sleep(0.25) ## debug #logger.log(level=30, msg="pdf_files_inputs", extra={"input_arg[0]:": pdf_files[0]}) #if not files: if not pdf_files or pdf_files is None: ## Check if files is None. This handles the case where no files are uploaded. logger.log(level=30, msg="Initialising ProcessPool: No files uploaded.", extra={"pdf_files": pdf_files, "files_len": pdf_files_count}) #outputs=[log_output, files_individual_JSON, files_individual_downloads], return [gr.update(interactive=True), "Initialising ProcessPool: No files uploaded.", {"Upload":"No files uploaded"}, f"dummy_log.log"] progress((2,16), desc=f"Getting configuration values") time.sleep(0.25) # Get config values if not provided #config_file = find_file("config.ini") ##from file_handler.file_utils ##takes a bit of time to process. #NeedOptimise config_file = Path("utils") / "config.ini" ##SMY: speed up sacrificing flexibility model_id = model_id if model_id else get_config_value(config_file, "MARKER_CAP", "MODEL_ID") openai_base_url = openai_base_url if openai_base_url else get_config_value(config_file, "MARKER_CAP", "OPENAI_BASE_URL") openai_image_format = openai_image_format if openai_image_format else get_config_value(config_file, "MARKER_CAP", "OPENAI_IMAGE_FORMAT") max_workers = max_workers if max_workers else get_config_value(config_file, "MARKER_CAP", "MAX_WORKERS") max_retries = max_retries if max_retries else get_config_value(config_file, "MARKER_CAP", "MAX_RETRIES") output_format = output_format if output_format else get_config_value(config_file, "MARKER_CAP", "OUTPUT_FORMAT") output_dir_string = output_dir_string if output_dir_string else str(get_config_value(config_file, "MARKER_CAP", "OUTPUT_DIR")) use_llm = use_llm if use_llm else get_config_value(config_file, "MARKER_CAP", "USE_LLM") page_range = page_range if page_range else get_config_value(config_file,"MARKER_CAP", "PAGE_RANGE") weasyprint_dll_directories= weasyprint_dll_directories if weasyprint_dll_directories else None config_load_models.weasyprint_libpath = weasyprint_dll_directories ## Assign user's weasyprint path to Global var config_load_models.pdf_files_count = pdf_files_count #pooling = True ##SMY: placeholder progress((3,16), desc=f"Retrieved configuration values") time.sleep(0.25) # Create the initargs tuple from the Gradio inputs: # 'files' is an iterable, and handled separately. yield gr.update(interactive=False), f"Setting global variables : Initialising init_args", {"process": "Processing files ..."}, f"dummy_log.log" progress((4,16), desc=f"Setting global variables : Initialiasing init_args") time.sleep(0.25) #init_args = ( ... # set global variables from globals import config_load #self.pdf_files_count: int = 0 config_load.provider = provider config_load.model_id = model_id config_load.hf_provider = hf_provider config_load.endpoint = endpoint config_load.backend_choice = backend_choice config_load.system_message = system_message config_load.max_tokens = max_tokens config_load.temperature = temperature config_load.top_p = top_p config_load.stream = stream config_load.api_token = api_token config_load.openai_base_url = openai_base_url config_load.openai_image_format = openai_image_format config_load.max_workers = max_workers config_load.max_retries = max_retries config_load.debug = debug #output_format: str = "markdown", config_load.output_format = output_format config_load.output_dir_string = output_dir_string config_load.use_llm = use_llm config_load.force_ocr = force_ocr config_load.strip_existing_ocr = strip_existing_ocr config_load.disable_ocr_math = disable_ocr_math config_load.page_range = page_range #config_load.weasyprint_dll_directories: str = None, config_load.tz_hours = tz_hours config_load.pooling = pooling ## placeholder for ProcessPoolExecutor flag # 1. create output_dir try: yield gr.update(interactive=False), f"Creating output_dir ...", {"process": "Processing files ..."}, f"dummy_log.log" progress((5,16), desc=f"ProcessPoolExecutor: Creating output_dir") time.sleep(0.25) #pdf2md_converter.output_dir_string = output_dir_string ##SMY: attempt setting directly to resolve pool.map iterable # Create Marker output_dir in temporary directory where Gradio can access it. #file_utils. output_dir = create_temp_folder(output_dir_string) #pdf2md_converter.output_dir = output_dir ##SMY should now redirect to globals config_load.output_dir = output_dir logger.info(f"✓ output_dir created: ", extra={"output_dir": config_load.output_dir.name, "in": str(config_load.output_dir.parent)}) yield gr.update(interactive=False), f"Created output_dir ...", {"process": "Processing files ..."}, f"dummy_log.log" progress((6,16), desc=f"✓ Created output_dir.") time.sleep(0.25) except Exception as exc: tb = traceback.format_exc() tbp = traceback.print_exc() # Print the exception traceback logger.exception("✗ error creating output_dir → {exc}\n{tb}", exc_info=True) # Log the full traceback # Update the Gradio UI to improve user-friendly eXperience yield gr.update(interactive=True), f"✗ An error occurred creating output_dir: {str(exc)}", {"Error":f"Error: {exc}"}, f"dummy_log.log" ## return the exception message return f"An error occurred creating output_dir: {str(exc)}", f"Error: {exc}", f"Error: {exc}" ## return the exception message # 2. Process file conversion leveraging ProcessPoolExecutor for efficiency results = [] ## Processed files result holder logger.log(level=30, msg="Initialising Processing Files ...", extra={"pdf_files": pdf_files, "files_len": len(pdf_files), "model_id": model_id, "output_dir": output_dir_string}) #pdf_files_count yield gr.update(interactive=False), f"Initialising Processing Files ...", {"process": "Processing files ..."}, f"dummy_log.log" progress((7,16), desc=f"Initialising Processing Files ...") time.sleep(0.25) try: #yield gr.update(interactive=True), f"Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log" progress((8,16), desc=f"Pooling file conversion ...") time.sleep(0.25) yield gr.update(interactive=False), f"Pooling file conversion ...", {"process": "Processing files ..."}, f"dummy_log.log" ##SMY: Future: users choose sequential or pooling from Gradio ui match pooling: case "no_pooling": results = get_results_files_conversion(pdf_files, pdf_files_count,progress) case "pooling": results = get_results_files_conversion_with_pool(pdf_files, pdf_files_count, max_workers, progress) case "as_completed": results = get_results_files_conversion_with_pool_ascomplete(pdf_files, pdf_files_count, max_workers, progress) logger.log(level=30, msg="Got Results from files conversion: ", extra={"results": str(results)[:20]}) yield gr.update(interactive=True), f"Got Results from files conversion: [{str(results)[:20]}]", {"process": "Processing files ..."}, f"dummy_log.log" progress((9,16), desc=f"Got Results from files conversion") time.sleep(0.25) except Exception as exc: tb = traceback.format_exc() logger.exception(f"✗ Error during Files processing → {exc}\n{tb}" , exc_info=True) # Log the full traceback #traceback.print_exc() # Print the exception traceback yield gr.update(interactive=True), f"✗ An error occurred during Files Processing → {exc}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message return [gr.update(interactive=True), f"✗ An error occurred during files processing → {exc}", {"Error":f"Error: {exc}"}, f"dummy_log.log"] # 3. Process file conversion results try: logger.log(level=20, msg="ProcessPoolExecutor pool result:", extra={"results": str(results)}) progress((12,16), desc="Processing results from files conversion") ##rekickin time.sleep(0.25) logs = [] logs_files_images = [] #logs.extend(results) ## performant pythonic #logs = list[results] ## logs = [result for result in results] ## pythonic list comprehension # [template] ## logs : [file , images , filepath, image_path] #logs_files_images = logs_files.extend(logs_images) #zip(logs_files, logs_images) ##SMY: in progress logs_count = 0 #for log in logs: for i, log in enumerate(logs): logs_files_images.append(log.get("filepath") if is_dict(log) or is_list_of_dicts(logs) else "Error or no file_path") # isinstance(log, (dict, str)) logs_files_images.extend(list(image for image in log.get("image_path", "Error or no image_path"))) i_image_count = log.get("images", 0) # Update the Gradio UI to improve user-friendly eXperience #yield gr.update(interactive=False), f"Processing files: {logs_files_images[logs_count]}", {"process": "Processing files"}, f"dummy_log.log" progress1(0.7, desc=f"Processing result log {i}: {str(log)}") logs_count = i+i_image_count except Exception as exc: tbp = traceback.print_exc() # Print the exception traceback logger.exception("Error during processing results logs → {exc}\n{tbp}", exc_info=True) # Log the full traceback return [gr.update(interactive=True), f"An error occurred during processing results logs: {str(exc)}\n{tbp}", {"Error":f"Error: {exc}"}, f"dummy_log.log"] ## return the exception message #yield gr.update(interactive=True), f"An error occurred during processing results logs: {str(exc)}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" ## return the exception message # 4. Zip Processed Files and images. Insert to first index try: ##from file_handler.file_utils progress((13,16), desc="Zipping processed files and images") time.sleep(0.25) zipped_processed_files = zip_processed_files(root_dir=f"{output_dir}", file_paths=logs_files_images, tz_hours=tz_hours, date_format='%d%b%Y_%H-%M-%S') #date_format='%d%b%Y' logs_files_images.insert(0, zipped_processed_files) #yield gr.update(interactive=False), f"Processing zip and files: {logs_files_images}", {"process": "Processing files"}, f"dummy_log.log" progress((14,16), desc="Zipped processed files and images") time.sleep(0.25) except Exception as exc: tb = traceback.format_exc() logger.exception(f"✗ Error during zipping processed files → {exc}\n{tb}" , exc_info=True) # Log the full traceback #traceback.print_exc() # Print the exception traceback yield gr.update(interactive=True), f"✗ An error occurred during zipping files → {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message return gr.update(interactive=True), f"✗ An error occurred during zipping files → {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message # 5. Return processed files log try: progress((15,16), desc="Formatting processed log results") time.sleep(0.25) ## # Convert logs list of dicts to formatted json stringutils.file_utils. logs_return_formatted_json_string = process_dicts_data(logs) #"\n".join(log for log in logs) ##SMY outputs to gr.JSON component with no need for json.dumps(data, indent=) #logs_files_images_return = "\n".join(path for path in logs_files_images) ##TypeError: sequence item 0: expected str instance, WindowsPath found ## # Convert any Path objects to strings, but leave strings as-is logs_files_images_return = list(str(path) if isinstance(path, Path) else path for path in logs_files_images) logger.log(level=20, msg="File conversion complete. Sending outcome to Gradio:", extra={"logs_files_image_return": str(logs_files_images_return)}) ## debug: FileNotFoundError: [WinError 2] The system cannot find the file specified: 'Error or no image_path' progress((16,16), desc="Complete processing and formatting file processing results") time.sleep(0.25) # [templates] #outputs=[process_button, log_output, files_individual_JSON, files_individual_downloads], #return "\n".join(logs), "\n".join(logs_files_images) #"\n".join(logs_files) yield gr.update(interactive=True), gr.update(value=logs_return_formatted_json_string), gr.update(value=logs_return_formatted_json_string, visible=True), gr.update(value=logs_files_images_return, visible=True) ##SMY: redundant return [gr.update(interactive=True), gr.update(value=logs_return_formatted_json_string), gr.update(value=logs_return_formatted_json_string, visible=True), gr.update(value=logs_files_images_return, visible=True)] #yield gr.update(interactive=True), logs_return_formatted_json_string, logs_return_formatted_json_string, logs_files_images_return #return [gr.update(interactive=True), logs_return_formatted_json_string, logs_return_formatted_json_string, logs_files_images_return] except Exception as exc: tb = traceback.format_exc() logger.exception(f"✗ Error during returning result logs → {exc}\n{tb}" , exc_info=True) # Log the full traceback #traceback.print_exc() # Print the exception traceback yield gr.update(interactive=True), f"✗ An error occurred during returning result logs→ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log" # return the exception message return [gr.update(interactive=True), f"✗ An error occurred during returning result logs→ {exc}\n{tb}", {"Error":f"Error: {exc}"}, f"dummy_log.log"] # return the exception message #return "\n".join(log for log in logs), "\n".join(str(path) for path in logs_files_images) #print(f'logs_files_images: {"\n".join(str(path) for path in logs_files_images)}') ## SMY: to be implemented/refactored AND moved to logic file ''' def convert_md_to_pdf(file: gr.File | None, folder: str | None) -> list[gr.File]: """ Gradio callback for Markdown → PDF. Returns a list of generated PDF files (as Gradio File objects). """ if not file and not folder: return [] md_paths = [] # Single file if file: md_path = Path(file.name) md_paths.append(md_path) # Folder if folder: try: md_paths.extend(collect_markdown_paths(folder)) except Exception as exc: logger.exception("Folder traversal failed.") return [] if not md_paths: return [] output_dir = Path("./generated_pdfs") output_dir.mkdir(exist_ok=True) pdf_files = md2pdf_converter.batch_convert(md_paths, output_dir) # Convert to Gradio File objects gr_files = [gr.File(path=str(p)) for p in pdf_files] return gr_files ''' ##==================== #Gradio interface moved to gradio_ui.py #def build_interface() -> gr.Blocks: # """ # Assemble the Gradio Blocks UI. # """ if __name__ == '__name__': convert_batch()