Spaces:
Running
on
T4
Running
on
T4
Tom Aarsen
commited on
Commit
·
3921dd6
1
Parent(s):
eded98b
Add SparseEncoder & CrossEncoder support to backend-export
Browse files- README.md +1 -1
- app.py +490 -112
- images/backends_benchmark_cpu.png +0 -0
- images/backends_benchmark_gpu.png +0 -0
- requirements.txt +3 -3
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: ⚙️
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
app.py
CHANGED
|
@@ -1,18 +1,30 @@
|
|
| 1 |
from enum import Enum
|
| 2 |
-
from functools import partial
|
|
|
|
| 3 |
from pathlib import Path
|
| 4 |
from typing import Optional, Tuple
|
| 5 |
import gradio as gr
|
| 6 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 7 |
import huggingface_hub
|
| 8 |
-
from sentence_transformers import SentenceTransformer
|
| 9 |
from sentence_transformers import (
|
| 10 |
export_dynamic_quantized_onnx_model as st_export_dynamic_quantized_onnx_model,
|
| 11 |
export_optimized_onnx_model as st_export_optimized_onnx_model,
|
| 12 |
export_static_quantized_openvino_model as st_export_static_quantized_openvino_model,
|
| 13 |
)
|
| 14 |
-
from huggingface_hub import
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from optimum.intel import OVQuantizationConfig
|
| 17 |
from tempfile import TemporaryDirectory
|
| 18 |
|
|
@@ -29,9 +41,20 @@ class Backend(Enum):
|
|
| 29 |
return self.value
|
| 30 |
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
backends = [str(backend) for backend in Backend]
|
| 33 |
FILE_SYSTEM = HfFileSystem()
|
| 34 |
|
|
|
|
| 35 |
def is_new_model(model_id: str) -> bool:
|
| 36 |
"""
|
| 37 |
Check if the model ID exists on the Hugging Face Hub. If we get a request error, then we
|
|
@@ -50,12 +73,59 @@ def is_sentence_transformer_model(model_id: str) -> bool:
|
|
| 50 |
return "sentence-transformers" in model_info(model_id).tags
|
| 51 |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def get_last_commit(model_id: str) -> str:
|
| 54 |
"""
|
| 55 |
Get the last commit hash of the model ID.
|
| 56 |
"""
|
| 57 |
return f"https://huggingface.co/{model_id}/commit/{list_repo_commits(model_id)[0].commit_id}"
|
| 58 |
|
|
|
|
| 59 |
def get_last_pr(model_id: str) -> Tuple[str, int]:
|
| 60 |
last_pr = next(get_repo_discussions(model_id))
|
| 61 |
return last_pr.url, last_pr.num
|
|
@@ -80,12 +150,25 @@ def export_to_torch(model_id, create_pr, output_model_id):
|
|
| 80 |
)
|
| 81 |
|
| 82 |
|
| 83 |
-
def export_to_onnx(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
if does_file_glob_exist(output_model_id, "**/model.onnx"):
|
| 85 |
raise FileExistsError("An ONNX model already exists in the repository")
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
commit_message = "Add exported onnx model 'model.onnx'"
|
| 90 |
|
| 91 |
if is_new_model(output_model_id):
|
|
@@ -110,22 +193,27 @@ Hello!
|
|
| 110 |
## Tip:
|
| 111 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
| 112 |
```python
|
| 113 |
-
from sentence_transformers import
|
| 114 |
|
| 115 |
# TODO: Fill in the PR number
|
| 116 |
pr_number = 2
|
| 117 |
-
model =
|
| 118 |
"{output_model_id}",
|
| 119 |
revision=f"refs/pr/{{pr_number}}",
|
| 120 |
backend="onnx",
|
| 121 |
)
|
| 122 |
|
| 123 |
# Verify that everything works as expected
|
| 124 |
-
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 125 |
print(embeddings.shape)
|
| 126 |
|
| 127 |
similarities = model.similarity(embeddings, embeddings)
|
| 128 |
-
print(similarities)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
```
|
| 130 |
"""
|
| 131 |
|
|
@@ -139,16 +227,24 @@ print(similarities)
|
|
| 139 |
token=token,
|
| 140 |
)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
pip install sentence_transformers[onnx-gpu]
|
| 145 |
# or
|
| 146 |
pip install sentence_transformers[onnx]
|
| 147 |
-
""",
|
| 148 |
-
|
|
|
|
| 149 |
|
| 150 |
# 1. Load the model to be exported with the ONNX backend
|
| 151 |
-
model =
|
| 152 |
"{model_id}",
|
| 153 |
backend="onnx",
|
| 154 |
)
|
|
@@ -160,31 +256,60 @@ model = SentenceTransformer(
|
|
| 160 |
"{output_model_id}",
|
| 161 |
create_pr=True,
|
| 162 |
)'''}
|
| 163 |
-
""",
|
| 164 |
-
|
|
|
|
| 165 |
|
| 166 |
# 1. Load the model from the Hugging Face Hub
|
| 167 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 168 |
pr_number = 2
|
| 169 |
-
model =
|
| 170 |
"{output_model_id}",
|
| 171 |
revision=f"refs/pr/{{pr_number}}",
|
| 172 |
backend="onnx",
|
| 173 |
)
|
| 174 |
-
|
|
|
|
|
|
|
| 175 |
# 2. Inference works as normal
|
| 176 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 177 |
similarities = model.similarity(embeddings, embeddings)
|
| 178 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
|
| 181 |
def export_to_onnx_dynamic_quantization(
|
| 182 |
-
model_id: str,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
) -> None:
|
| 184 |
-
if does_file_glob_exist(
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
if not create_pr and is_new_model(output_model_id):
|
| 190 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
@@ -202,7 +327,20 @@ def export_to_onnx_dynamic_quantization(
|
|
| 202 |
)
|
| 203 |
except ValueError:
|
| 204 |
# Currently, quantization with optimum has some issues if there's already an ONNX model in a subfolder
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
st_export_dynamic_quantized_onnx_model(
|
| 207 |
model,
|
| 208 |
quantization_config=onnx_quantization_config,
|
|
@@ -213,21 +351,31 @@ def export_to_onnx_dynamic_quantization(
|
|
| 213 |
finally:
|
| 214 |
huggingface_hub.upload_folder = original_upload_folder
|
| 215 |
|
|
|
|
| 216 |
def export_to_onnx_dynamic_quantization_snippet(
|
| 217 |
-
model_id: str,
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
pip install sentence_transformers[onnx-gpu]
|
| 221 |
# or
|
| 222 |
pip install sentence_transformers[onnx]
|
| 223 |
-
""",
|
|
|
|
| 224 |
from sentence_transformers import (
|
| 225 |
-
|
| 226 |
export_dynamic_quantized_onnx_model,
|
| 227 |
)
|
| 228 |
|
| 229 |
-
# 1. Load the model to be
|
| 230 |
-
model =
|
| 231 |
"{model_id}",
|
| 232 |
backend="onnx",
|
| 233 |
)
|
|
@@ -240,29 +388,61 @@ export_dynamic_quantized_onnx_model(
|
|
| 240 |
push_to_hub=True,
|
| 241 |
{''' create_pr=True,
|
| 242 |
''' if create_pr else ''})
|
| 243 |
-
""",
|
| 244 |
-
|
|
|
|
| 245 |
|
| 246 |
# 1. Load the model from the Hugging Face Hub
|
| 247 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 248 |
pr_number = 2
|
| 249 |
-
model =
|
| 250 |
"{output_model_id}",
|
| 251 |
revision=f"refs/pr/{{pr_number}}",
|
| 252 |
backend="onnx",
|
| 253 |
model_kwargs={{"file_name": "model_qint8_{onnx_quantization_config}.onnx"}},
|
| 254 |
)
|
| 255 |
-
|
|
|
|
|
|
|
| 256 |
# 2. Inference works as normal
|
| 257 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 258 |
similarities = model.similarity(embeddings, embeddings)
|
| 259 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
def export_to_onnx_optimization(model_id: str, create_pr: bool, output_model_id: str, onnx_optimization_config: str, token: Optional[str] = None) -> None:
|
| 262 |
-
if does_file_glob_exist(output_model_id, f"onnx/model_{onnx_optimization_config}.onnx"):
|
| 263 |
-
raise FileExistsError("The optimized ONNX model already exists in the repository")
|
| 264 |
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
if not create_pr and is_new_model(output_model_id):
|
| 268 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
@@ -281,19 +461,31 @@ def export_to_onnx_optimization(model_id: str, create_pr: bool, output_model_id:
|
|
| 281 |
finally:
|
| 282 |
huggingface_hub.upload_folder = original_upload_folder
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
pip install sentence_transformers[onnx-gpu]
|
| 287 |
# or
|
| 288 |
pip install sentence_transformers[onnx]
|
| 289 |
-
""",
|
|
|
|
| 290 |
from sentence_transformers import (
|
| 291 |
-
|
| 292 |
export_optimized_onnx_model,
|
| 293 |
)
|
| 294 |
|
| 295 |
# 1. Load the model to be optimized with the ONNX backend
|
| 296 |
-
model =
|
| 297 |
"{model_id}",
|
| 298 |
backend="onnx",
|
| 299 |
)
|
|
@@ -306,30 +498,56 @@ export_optimized_onnx_model(
|
|
| 306 |
push_to_hub=True,
|
| 307 |
{''' create_pr=True,
|
| 308 |
''' if create_pr else ''})
|
| 309 |
-
""",
|
| 310 |
-
|
|
|
|
| 311 |
|
| 312 |
# 1. Load the model from the Hugging Face Hub
|
| 313 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 314 |
pr_number = 2
|
| 315 |
-
model =
|
| 316 |
"{output_model_id}",
|
| 317 |
revision=f"refs/pr/{{pr_number}}",
|
| 318 |
backend="onnx",
|
| 319 |
model_kwargs={{"file_name": "model_{onnx_optimization_config}.onnx"}},
|
| 320 |
)
|
| 321 |
-
|
|
|
|
|
|
|
| 322 |
# 2. Inference works as normal
|
| 323 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 324 |
similarities = model.similarity(embeddings, embeddings)
|
| 325 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
|
| 328 |
-
def export_to_openvino(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
if does_file_glob_exist(output_model_id, "**/openvino_model.xml"):
|
| 330 |
raise FileExistsError("The OpenVINO model already exists in the repository")
|
| 331 |
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
commit_message = "Add exported openvino model 'openvino_model.xml'"
|
| 335 |
|
|
@@ -355,22 +573,27 @@ Hello!
|
|
| 355 |
## Tip:
|
| 356 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
| 357 |
```python
|
| 358 |
-
from sentence_transformers import
|
| 359 |
|
| 360 |
# TODO: Fill in the PR number
|
| 361 |
pr_number = 2
|
| 362 |
-
model =
|
| 363 |
"{output_model_id}",
|
| 364 |
revision=f"refs/pr/{{pr_number}}",
|
| 365 |
backend="openvino",
|
| 366 |
)
|
| 367 |
|
| 368 |
# Verify that everything works as expected
|
| 369 |
-
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 370 |
print(embeddings.shape)
|
| 371 |
|
| 372 |
similarities = model.similarity(embeddings, embeddings)
|
| 373 |
-
print(similarities)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
```
|
| 375 |
"""
|
| 376 |
|
|
@@ -384,14 +607,22 @@ print(similarities)
|
|
| 384 |
token=token,
|
| 385 |
)
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
pip install sentence_transformers[openvino]
|
| 390 |
-
""",
|
| 391 |
-
|
|
|
|
| 392 |
|
| 393 |
# 1. Load the model to be exported with the OpenVINO backend
|
| 394 |
-
model =
|
| 395 |
"{model_id}",
|
| 396 |
backend="openvino",
|
| 397 |
)
|
|
@@ -403,25 +634,40 @@ model = SentenceTransformer(
|
|
| 403 |
"{output_model_id}",
|
| 404 |
create_pr=True,
|
| 405 |
)'''}
|
| 406 |
-
""",
|
| 407 |
-
|
|
|
|
| 408 |
|
| 409 |
# 1. Load the model from the Hugging Face Hub
|
| 410 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 411 |
pr_number = 2
|
| 412 |
-
model =
|
| 413 |
"{output_model_id}",
|
| 414 |
revision=f"refs/pr/{{pr_number}}",
|
| 415 |
backend="openvino",
|
| 416 |
)
|
| 417 |
-
|
|
|
|
|
|
|
| 418 |
# 2. Inference works as normal
|
| 419 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 420 |
similarities = model.similarity(embeddings, embeddings)
|
| 421 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
|
| 423 |
def export_to_openvino_static_quantization(
|
| 424 |
model_id: str,
|
|
|
|
| 425 |
create_pr: bool,
|
| 426 |
output_model_id: str,
|
| 427 |
ov_quant_dataset_name: str,
|
|
@@ -431,10 +677,21 @@ def export_to_openvino_static_quantization(
|
|
| 431 |
ov_quant_dataset_num_samples: int,
|
| 432 |
token: Optional[str] = None,
|
| 433 |
) -> None:
|
| 434 |
-
if does_file_glob_exist(
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
|
| 439 |
if not create_pr and is_new_model(output_model_id):
|
| 440 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
@@ -459,8 +716,10 @@ def export_to_openvino_static_quantization(
|
|
| 459 |
finally:
|
| 460 |
huggingface_hub.upload_folder = original_upload_folder
|
| 461 |
|
|
|
|
| 462 |
def export_to_openvino_static_quantization_snippet(
|
| 463 |
model_id: str,
|
|
|
|
| 464 |
create_pr: bool,
|
| 465 |
output_model_id: str,
|
| 466 |
ov_quant_dataset_name: str,
|
|
@@ -468,18 +727,23 @@ def export_to_openvino_static_quantization_snippet(
|
|
| 468 |
ov_quant_dataset_split: str,
|
| 469 |
ov_quant_dataset_column_name: str,
|
| 470 |
ov_quant_dataset_num_samples: int,
|
| 471 |
-
) -> str:
|
| 472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
pip install sentence_transformers[openvino]
|
| 474 |
-
""",
|
|
|
|
| 475 |
from sentence_transformers import (
|
| 476 |
-
|
| 477 |
export_static_quantized_openvino_model,
|
| 478 |
)
|
| 479 |
from optimum.intel import OVQuantizationConfig
|
| 480 |
|
| 481 |
# 1. Load the model to be quantized with the OpenVINO backend
|
| 482 |
-
model =
|
| 483 |
"{model_id}",
|
| 484 |
backend="openvino",
|
| 485 |
)
|
|
@@ -498,23 +762,37 @@ export_static_quantized_openvino_model(
|
|
| 498 |
push_to_hub=True,
|
| 499 |
{''' create_pr=True,
|
| 500 |
''' if create_pr else ''})
|
| 501 |
-
""",
|
| 502 |
-
|
|
|
|
| 503 |
|
| 504 |
# 1. Load the model from the Hugging Face Hub
|
| 505 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 506 |
pr_number = 2
|
| 507 |
-
model =
|
| 508 |
"{output_model_id}",
|
| 509 |
revision=f"refs/pr/{{pr_number}}",
|
| 510 |
backend="openvino",
|
| 511 |
model_kwargs={{"file_name": "openvino_model_qint8_quantized.xml"}},
|
| 512 |
)
|
| 513 |
-
|
|
|
|
|
|
|
| 514 |
# 2. Inference works as normal
|
| 515 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 516 |
similarities = model.similarity(embeddings, embeddings)
|
| 517 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 518 |
|
| 519 |
def on_submit(
|
| 520 |
model_id,
|
|
@@ -533,35 +811,67 @@ def on_submit(
|
|
| 533 |
profile: Optional[gr.OAuthProfile] = None,
|
| 534 |
):
|
| 535 |
if oauth_token is None or profile is None:
|
| 536 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
| 538 |
if not model_id:
|
| 539 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
if not is_sentence_transformer_model(model_id):
|
| 542 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
|
| 544 |
if output_model_id and "/" not in output_model_id:
|
| 545 |
output_model_id = f"{profile.name}/{output_model_id}"
|
| 546 |
|
| 547 |
output_model_id = output_model_id if not create_pr else model_id
|
|
|
|
| 548 |
|
| 549 |
try:
|
| 550 |
if backend == Backend.ONNX.value:
|
| 551 |
-
export_to_onnx(
|
|
|
|
|
|
|
| 552 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
| 553 |
export_to_onnx_dynamic_quantization(
|
| 554 |
-
model_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
)
|
| 556 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
| 557 |
export_to_onnx_optimization(
|
| 558 |
-
model_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 559 |
)
|
| 560 |
elif backend == Backend.OPENVINO.value:
|
| 561 |
-
export_to_openvino(
|
|
|
|
|
|
|
| 562 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
| 563 |
export_to_openvino_static_quantization(
|
| 564 |
model_id,
|
|
|
|
| 565 |
create_pr,
|
| 566 |
output_model_id,
|
| 567 |
ov_quant_dataset_name,
|
|
@@ -572,19 +882,32 @@ def on_submit(
|
|
| 572 |
token=oauth_token.token,
|
| 573 |
)
|
| 574 |
except FileExistsError as exc:
|
| 575 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
|
| 577 |
if create_pr:
|
| 578 |
url, num = get_last_pr(output_model_id)
|
| 579 |
-
return
|
| 580 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
# Remove the lines that refer to the revision argument
|
| 582 |
lines = inference_snippet.splitlines()
|
| 583 |
del lines[7]
|
| 584 |
del lines[4]
|
| 585 |
del lines[3]
|
| 586 |
inference_snippet = "\n".join(lines)
|
| 587 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 588 |
|
| 589 |
def on_change(
|
| 590 |
model_id,
|
|
@@ -602,31 +925,44 @@ def on_change(
|
|
| 602 |
profile: Optional[gr.OAuthProfile] = None,
|
| 603 |
) -> str:
|
| 604 |
if oauth_token is None or profile is None:
|
| 605 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
|
| 607 |
if not model_id:
|
| 608 |
return "", "", "", gr.Textbox("Please enter a model ID", visible=True)
|
| 609 |
-
|
| 610 |
if output_model_id and "/" not in output_model_id:
|
| 611 |
output_model_id = f"{profile.username}/{output_model_id}"
|
| 612 |
|
| 613 |
output_model_id = output_model_id if not create_pr else model_id
|
|
|
|
| 614 |
|
| 615 |
if backend == Backend.ONNX.value:
|
| 616 |
-
snippets = export_to_onnx_snippet(
|
|
|
|
|
|
|
| 617 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
| 618 |
snippets = export_to_onnx_dynamic_quantization_snippet(
|
| 619 |
-
model_id, create_pr, output_model_id, onnx_quantization_config
|
| 620 |
)
|
| 621 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
| 622 |
snippets = export_to_onnx_optimization_snippet(
|
| 623 |
-
model_id, create_pr, output_model_id, onnx_optimization_config
|
| 624 |
)
|
| 625 |
elif backend == Backend.OPENVINO.value:
|
| 626 |
-
snippets = export_to_openvino_snippet(
|
|
|
|
|
|
|
| 627 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
| 628 |
snippets = export_to_openvino_static_quantization_snippet(
|
| 629 |
model_id,
|
|
|
|
| 630 |
create_pr,
|
| 631 |
output_model_id,
|
| 632 |
ov_quant_dataset_name,
|
|
@@ -637,7 +973,7 @@ def on_change(
|
|
| 637 |
)
|
| 638 |
else:
|
| 639 |
return "", "", "", gr.Textbox("Unexpected backend!", visible=True)
|
| 640 |
-
|
| 641 |
return *snippets, gr.Textbox(visible=False)
|
| 642 |
|
| 643 |
|
|
@@ -664,34 +1000,75 @@ with gr.Blocks(
|
|
| 664 |
with gr.Row():
|
| 665 |
# Left Input Column
|
| 666 |
with gr.Column(scale=2):
|
| 667 |
-
|
| 668 |
gr.Markdown(
|
| 669 |
value="""\
|
| 670 |
-
### Export a
|
| 671 |
|
| 672 |
-
Sentence Transformers
|
| 673 |
-
Observe the
|
|
|
|
|
|
|
|
|
|
| 674 |
""",
|
| 675 |
label="",
|
| 676 |
container=True,
|
| 677 |
)
|
| 678 |
-
gr.HTML(
|
|
|
|
| 679 |
<details><summary>Click to see performance benchmarks</summary>
|
| 680 |
|
| 681 |
<table>
|
| 682 |
<thead>
|
| 683 |
<tr>
|
| 684 |
-
<th>GPU</th>
|
| 685 |
-
<th>CPU</th>
|
| 686 |
</tr>
|
| 687 |
</thead>
|
| 688 |
<tbody>
|
| 689 |
<tr>
|
| 690 |
<td>
|
| 691 |
-
<img src="https://
|
| 692 |
</td>
|
| 693 |
<td>
|
| 694 |
-
<img src="https://
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
</td>
|
| 696 |
</tr>
|
| 697 |
</tbody>
|
|
@@ -706,11 +1083,12 @@ Observe the [Speeding up Inference](https://sbert.net/docs/sentence_transformer/
|
|
| 706 |
</ul>
|
| 707 |
|
| 708 |
</details>
|
| 709 |
-
"""
|
|
|
|
| 710 |
|
| 711 |
model_id = HuggingfaceHubSearch(
|
| 712 |
-
label="
|
| 713 |
-
placeholder="Search for
|
| 714 |
search_type="model",
|
| 715 |
)
|
| 716 |
create_pr = gr.Checkbox(
|
|
@@ -741,33 +1119,33 @@ Observe the [Speeding up Inference](https://sbert.net/docs/sentence_transformer/
|
|
| 741 |
gr.Markdown(
|
| 742 |
value="[ONNX Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#onnx)",
|
| 743 |
container=True,
|
| 744 |
-
elem_classes=["small-text"]
|
| 745 |
)
|
| 746 |
with gr.Group(visible=False) as onnx_dynamic_quantization_group:
|
| 747 |
onnx_quantization_config = gr.Radio(
|
| 748 |
choices=["arm64", "avx2", "avx512", "avx512_vnni"],
|
| 749 |
value="avx512_vnni",
|
| 750 |
label="Quantization config",
|
| 751 |
-
info="[ONNX Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-onnx-models)"
|
| 752 |
)
|
| 753 |
with gr.Group(visible=False) as onnx_optimization_group:
|
| 754 |
onnx_optimization_config = gr.Radio(
|
| 755 |
choices=["O1", "O2", "O3", "O4"],
|
| 756 |
value="O4",
|
| 757 |
label="Optimization config",
|
| 758 |
-
info="[ONNX Optimization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#optimizing-onnx-models)"
|
| 759 |
)
|
| 760 |
with gr.Group(visible=False) as openvino_group:
|
| 761 |
gr.Markdown(
|
| 762 |
value="[OpenVINO Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#openvino)",
|
| 763 |
container=True,
|
| 764 |
-
elem_classes=["small-text"]
|
| 765 |
)
|
| 766 |
with gr.Group(visible=False) as openvino_static_quantization_group:
|
| 767 |
gr.Markdown(
|
| 768 |
value="[OpenVINO Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-openvino-models)",
|
| 769 |
container=True,
|
| 770 |
-
elem_classes=["small-text"]
|
| 771 |
)
|
| 772 |
ov_quant_dataset_name = HuggingfaceHubSearch(
|
| 773 |
value="nyu-mll/glue",
|
|
|
|
| 1 |
from enum import Enum
|
| 2 |
+
from functools import lru_cache, partial
|
| 3 |
+
import json
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Optional, Tuple
|
| 6 |
import gradio as gr
|
| 7 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 8 |
import huggingface_hub
|
| 9 |
+
from sentence_transformers import CrossEncoder, SentenceTransformer, SparseEncoder
|
| 10 |
from sentence_transformers import (
|
| 11 |
export_dynamic_quantized_onnx_model as st_export_dynamic_quantized_onnx_model,
|
| 12 |
export_optimized_onnx_model as st_export_optimized_onnx_model,
|
| 13 |
export_static_quantized_openvino_model as st_export_static_quantized_openvino_model,
|
| 14 |
)
|
| 15 |
+
from huggingface_hub import (
|
| 16 |
+
model_info,
|
| 17 |
+
upload_folder,
|
| 18 |
+
get_repo_discussions,
|
| 19 |
+
list_repo_commits,
|
| 20 |
+
HfFileSystem,
|
| 21 |
+
hf_hub_download,
|
| 22 |
+
)
|
| 23 |
+
from huggingface_hub.errors import (
|
| 24 |
+
RepositoryNotFoundError,
|
| 25 |
+
HFValidationError,
|
| 26 |
+
EntryNotFoundError,
|
| 27 |
+
)
|
| 28 |
from optimum.intel import OVQuantizationConfig
|
| 29 |
from tempfile import TemporaryDirectory
|
| 30 |
|
|
|
|
| 41 |
return self.value
|
| 42 |
|
| 43 |
|
| 44 |
+
class Archetype(Enum):
|
| 45 |
+
SENTENCE_TRANSFORMER = "SentenceTransformer"
|
| 46 |
+
SPARSE_ENCODER = "SparseEncoder"
|
| 47 |
+
CROSS_ENCODER = "CrossEncoder"
|
| 48 |
+
OTHER = "Other"
|
| 49 |
+
|
| 50 |
+
def __str__(self):
|
| 51 |
+
return self.value
|
| 52 |
+
|
| 53 |
+
|
| 54 |
backends = [str(backend) for backend in Backend]
|
| 55 |
FILE_SYSTEM = HfFileSystem()
|
| 56 |
|
| 57 |
+
|
| 58 |
def is_new_model(model_id: str) -> bool:
|
| 59 |
"""
|
| 60 |
Check if the model ID exists on the Hugging Face Hub. If we get a request error, then we
|
|
|
|
| 73 |
return "sentence-transformers" in model_info(model_id).tags
|
| 74 |
|
| 75 |
|
| 76 |
+
@lru_cache()
|
| 77 |
+
def get_archetype(model_id: str) -> Archetype:
|
| 78 |
+
if "/" not in model_id:
|
| 79 |
+
return Archetype.OTHER
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
config_sentence_transformers_path = hf_hub_download(
|
| 83 |
+
model_id, filename="config_sentence_transformers.json"
|
| 84 |
+
)
|
| 85 |
+
except (RepositoryNotFoundError, HFValidationError):
|
| 86 |
+
return Archetype.OTHER
|
| 87 |
+
except EntryNotFoundError:
|
| 88 |
+
config_sentence_transformers_path = None
|
| 89 |
+
|
| 90 |
+
try:
|
| 91 |
+
config_path = hf_hub_download(model_id, filename="config.json")
|
| 92 |
+
except (RepositoryNotFoundError, HFValidationError):
|
| 93 |
+
return Archetype.OTHER
|
| 94 |
+
except EntryNotFoundError:
|
| 95 |
+
config_path = None
|
| 96 |
+
|
| 97 |
+
if config_sentence_transformers_path is None and config_path is None:
|
| 98 |
+
return Archetype.OTHER
|
| 99 |
+
|
| 100 |
+
if config_sentence_transformers_path is not None:
|
| 101 |
+
with open(config_sentence_transformers_path, "r", encoding="utf8") as f:
|
| 102 |
+
st_config = json.load(f)
|
| 103 |
+
model_type = st_config.get("model_type", "SentenceTransformer")
|
| 104 |
+
if model_type == "SentenceTransformer":
|
| 105 |
+
return Archetype.SENTENCE_TRANSFORMER
|
| 106 |
+
elif model_type == "SparseEncoder":
|
| 107 |
+
return Archetype.SPARSE_ENCODER
|
| 108 |
+
else:
|
| 109 |
+
return Archetype.OTHER
|
| 110 |
+
|
| 111 |
+
if config_path is not None:
|
| 112 |
+
with open(config_path, "r", encoding="utf8") as f:
|
| 113 |
+
config = json.load(f)
|
| 114 |
+
if "sentence_transformers" in config or config["architectures"][0].endswith(
|
| 115 |
+
"ForSequenceClassification"
|
| 116 |
+
):
|
| 117 |
+
return Archetype.CROSS_ENCODER
|
| 118 |
+
|
| 119 |
+
return Archetype.OTHER
|
| 120 |
+
|
| 121 |
+
|
| 122 |
def get_last_commit(model_id: str) -> str:
|
| 123 |
"""
|
| 124 |
Get the last commit hash of the model ID.
|
| 125 |
"""
|
| 126 |
return f"https://huggingface.co/{model_id}/commit/{list_repo_commits(model_id)[0].commit_id}"
|
| 127 |
|
| 128 |
+
|
| 129 |
def get_last_pr(model_id: str) -> Tuple[str, int]:
|
| 130 |
last_pr = next(get_repo_discussions(model_id))
|
| 131 |
return last_pr.url, last_pr.num
|
|
|
|
| 150 |
)
|
| 151 |
|
| 152 |
|
| 153 |
+
def export_to_onnx(
|
| 154 |
+
model_id: str,
|
| 155 |
+
archetype: Archetype,
|
| 156 |
+
create_pr: bool,
|
| 157 |
+
output_model_id: str,
|
| 158 |
+
token: Optional[str] = None,
|
| 159 |
+
) -> None:
|
| 160 |
if does_file_glob_exist(output_model_id, "**/model.onnx"):
|
| 161 |
raise FileExistsError("An ONNX model already exists in the repository")
|
| 162 |
|
| 163 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
| 164 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
| 165 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
| 166 |
+
model = SparseEncoder(model_id, backend="onnx")
|
| 167 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
| 168 |
+
model = CrossEncoder(model_id, backend="onnx")
|
| 169 |
+
else:
|
| 170 |
+
return
|
| 171 |
+
|
| 172 |
commit_message = "Add exported onnx model 'model.onnx'"
|
| 173 |
|
| 174 |
if is_new_model(output_model_id):
|
|
|
|
| 193 |
## Tip:
|
| 194 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
| 195 |
```python
|
| 196 |
+
from sentence_transformers import {archetype}
|
| 197 |
|
| 198 |
# TODO: Fill in the PR number
|
| 199 |
pr_number = 2
|
| 200 |
+
model = {archetype}(
|
| 201 |
"{output_model_id}",
|
| 202 |
revision=f"refs/pr/{{pr_number}}",
|
| 203 |
backend="onnx",
|
| 204 |
)
|
| 205 |
|
| 206 |
# Verify that everything works as expected
|
| 207 |
+
{'''embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 208 |
print(embeddings.shape)
|
| 209 |
|
| 210 |
similarities = model.similarity(embeddings, embeddings)
|
| 211 |
+
print(similarities)''' if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER} else
|
| 212 |
+
'''predictions = model.predict([
|
| 213 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
| 214 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
| 215 |
+
])
|
| 216 |
+
print(predictions)'''}
|
| 217 |
```
|
| 218 |
"""
|
| 219 |
|
|
|
|
| 227 |
token=token,
|
| 228 |
)
|
| 229 |
|
| 230 |
+
|
| 231 |
+
def export_to_onnx_snippet(
|
| 232 |
+
model_id: str, archetype: Archetype, create_pr: bool, output_model_id: str
|
| 233 |
+
) -> Tuple[str, str, str]:
|
| 234 |
+
if archetype == Archetype.OTHER:
|
| 235 |
+
return "", "", ""
|
| 236 |
+
|
| 237 |
+
return (
|
| 238 |
+
"""\
|
| 239 |
pip install sentence_transformers[onnx-gpu]
|
| 240 |
# or
|
| 241 |
pip install sentence_transformers[onnx]
|
| 242 |
+
""",
|
| 243 |
+
f"""\
|
| 244 |
+
from sentence_transformers import {archetype}
|
| 245 |
|
| 246 |
# 1. Load the model to be exported with the ONNX backend
|
| 247 |
+
model = {archetype}(
|
| 248 |
"{model_id}",
|
| 249 |
backend="onnx",
|
| 250 |
)
|
|
|
|
| 256 |
"{output_model_id}",
|
| 257 |
create_pr=True,
|
| 258 |
)'''}
|
| 259 |
+
""",
|
| 260 |
+
f"""\
|
| 261 |
+
from sentence_transformers import {archetype}
|
| 262 |
|
| 263 |
# 1. Load the model from the Hugging Face Hub
|
| 264 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 265 |
pr_number = 2
|
| 266 |
+
model = {archetype}(
|
| 267 |
"{output_model_id}",
|
| 268 |
revision=f"refs/pr/{{pr_number}}",
|
| 269 |
backend="onnx",
|
| 270 |
)
|
| 271 |
+
"""
|
| 272 |
+
+ (
|
| 273 |
+
"""
|
| 274 |
# 2. Inference works as normal
|
| 275 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 276 |
similarities = model.similarity(embeddings, embeddings)
|
| 277 |
"""
|
| 278 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
| 279 |
+
else """
|
| 280 |
+
# 2. Inference works as normal
|
| 281 |
+
predictions = model.predict([
|
| 282 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
| 283 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
| 284 |
+
])
|
| 285 |
+
"""
|
| 286 |
+
),
|
| 287 |
+
)
|
| 288 |
|
| 289 |
|
| 290 |
def export_to_onnx_dynamic_quantization(
|
| 291 |
+
model_id: str,
|
| 292 |
+
archetype: Archetype,
|
| 293 |
+
create_pr: bool,
|
| 294 |
+
output_model_id: str,
|
| 295 |
+
onnx_quantization_config: str,
|
| 296 |
+
token: Optional[str] = None,
|
| 297 |
) -> None:
|
| 298 |
+
if does_file_glob_exist(
|
| 299 |
+
output_model_id, f"onnx/model_qint8_{onnx_quantization_config}.onnx"
|
| 300 |
+
):
|
| 301 |
+
raise FileExistsError(
|
| 302 |
+
"The quantized ONNX model already exists in the repository"
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
| 306 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
| 307 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
| 308 |
+
model = SparseEncoder(model_id, backend="onnx")
|
| 309 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
| 310 |
+
model = CrossEncoder(model_id, backend="onnx")
|
| 311 |
+
else:
|
| 312 |
+
return
|
| 313 |
|
| 314 |
if not create_pr and is_new_model(output_model_id):
|
| 315 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
|
|
| 327 |
)
|
| 328 |
except ValueError:
|
| 329 |
# Currently, quantization with optimum has some issues if there's already an ONNX model in a subfolder
|
| 330 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
| 331 |
+
model = SentenceTransformer(
|
| 332 |
+
model_id, backend="onnx", model_kwargs={"export": True}
|
| 333 |
+
)
|
| 334 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
| 335 |
+
model = SparseEncoder(
|
| 336 |
+
model_id, backend="onnx", model_kwargs={"export": True}
|
| 337 |
+
)
|
| 338 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
| 339 |
+
model = CrossEncoder(
|
| 340 |
+
model_id, backend="onnx", model_kwargs={"export": True}
|
| 341 |
+
)
|
| 342 |
+
else:
|
| 343 |
+
return
|
| 344 |
st_export_dynamic_quantized_onnx_model(
|
| 345 |
model,
|
| 346 |
quantization_config=onnx_quantization_config,
|
|
|
|
| 351 |
finally:
|
| 352 |
huggingface_hub.upload_folder = original_upload_folder
|
| 353 |
|
| 354 |
+
|
| 355 |
def export_to_onnx_dynamic_quantization_snippet(
|
| 356 |
+
model_id: str,
|
| 357 |
+
archetype: Archetype,
|
| 358 |
+
create_pr: bool,
|
| 359 |
+
output_model_id: str,
|
| 360 |
+
onnx_quantization_config: str,
|
| 361 |
+
) -> Tuple[str, str, str]:
|
| 362 |
+
if archetype == Archetype.OTHER:
|
| 363 |
+
return "", "", ""
|
| 364 |
+
|
| 365 |
+
return (
|
| 366 |
+
"""\
|
| 367 |
pip install sentence_transformers[onnx-gpu]
|
| 368 |
# or
|
| 369 |
pip install sentence_transformers[onnx]
|
| 370 |
+
""",
|
| 371 |
+
f"""\
|
| 372 |
from sentence_transformers import (
|
| 373 |
+
{archetype},
|
| 374 |
export_dynamic_quantized_onnx_model,
|
| 375 |
)
|
| 376 |
|
| 377 |
+
# 1. Load the model to be exported with the ONNX backend
|
| 378 |
+
model = {archetype}(
|
| 379 |
"{model_id}",
|
| 380 |
backend="onnx",
|
| 381 |
)
|
|
|
|
| 388 |
push_to_hub=True,
|
| 389 |
{''' create_pr=True,
|
| 390 |
''' if create_pr else ''})
|
| 391 |
+
""",
|
| 392 |
+
f"""\
|
| 393 |
+
from sentence_transformers import {archetype}
|
| 394 |
|
| 395 |
# 1. Load the model from the Hugging Face Hub
|
| 396 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 397 |
pr_number = 2
|
| 398 |
+
model = {archetype}(
|
| 399 |
"{output_model_id}",
|
| 400 |
revision=f"refs/pr/{{pr_number}}",
|
| 401 |
backend="onnx",
|
| 402 |
model_kwargs={{"file_name": "model_qint8_{onnx_quantization_config}.onnx"}},
|
| 403 |
)
|
| 404 |
+
"""
|
| 405 |
+
+ (
|
| 406 |
+
"""
|
| 407 |
# 2. Inference works as normal
|
| 408 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 409 |
similarities = model.similarity(embeddings, embeddings)
|
| 410 |
"""
|
| 411 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
| 412 |
+
else """
|
| 413 |
+
# 2. Inference works as normal
|
| 414 |
+
predictions = model.predict([
|
| 415 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
| 416 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
| 417 |
+
])
|
| 418 |
+
"""
|
| 419 |
+
),
|
| 420 |
+
)
|
| 421 |
|
|
|
|
|
|
|
|
|
|
| 422 |
|
| 423 |
+
def export_to_onnx_optimization(
|
| 424 |
+
model_id: str,
|
| 425 |
+
archetype: Archetype,
|
| 426 |
+
create_pr: bool,
|
| 427 |
+
output_model_id: str,
|
| 428 |
+
onnx_optimization_config: str,
|
| 429 |
+
token: Optional[str] = None,
|
| 430 |
+
) -> None:
|
| 431 |
+
if does_file_glob_exist(
|
| 432 |
+
output_model_id, f"onnx/model_{onnx_optimization_config}.onnx"
|
| 433 |
+
):
|
| 434 |
+
raise FileExistsError(
|
| 435 |
+
"The optimized ONNX model already exists in the repository"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
| 439 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
| 440 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
| 441 |
+
model = SparseEncoder(model_id, backend="onnx")
|
| 442 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
| 443 |
+
model = CrossEncoder(model_id, backend="onnx")
|
| 444 |
+
else:
|
| 445 |
+
return
|
| 446 |
|
| 447 |
if not create_pr and is_new_model(output_model_id):
|
| 448 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
|
|
| 461 |
finally:
|
| 462 |
huggingface_hub.upload_folder = original_upload_folder
|
| 463 |
|
| 464 |
+
|
| 465 |
+
def export_to_onnx_optimization_snippet(
|
| 466 |
+
model_id: str,
|
| 467 |
+
archetype: Archetype,
|
| 468 |
+
create_pr: bool,
|
| 469 |
+
output_model_id: str,
|
| 470 |
+
onnx_optimization_config: str,
|
| 471 |
+
) -> Tuple[str, str, str]:
|
| 472 |
+
if archetype == Archetype.OTHER:
|
| 473 |
+
return "", "", ""
|
| 474 |
+
|
| 475 |
+
return (
|
| 476 |
+
"""\
|
| 477 |
pip install sentence_transformers[onnx-gpu]
|
| 478 |
# or
|
| 479 |
pip install sentence_transformers[onnx]
|
| 480 |
+
""",
|
| 481 |
+
f"""\
|
| 482 |
from sentence_transformers import (
|
| 483 |
+
{archetype},
|
| 484 |
export_optimized_onnx_model,
|
| 485 |
)
|
| 486 |
|
| 487 |
# 1. Load the model to be optimized with the ONNX backend
|
| 488 |
+
model = {archetype}(
|
| 489 |
"{model_id}",
|
| 490 |
backend="onnx",
|
| 491 |
)
|
|
|
|
| 498 |
push_to_hub=True,
|
| 499 |
{''' create_pr=True,
|
| 500 |
''' if create_pr else ''})
|
| 501 |
+
""",
|
| 502 |
+
f"""\
|
| 503 |
+
from sentence_transformers import {archetype}
|
| 504 |
|
| 505 |
# 1. Load the model from the Hugging Face Hub
|
| 506 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 507 |
pr_number = 2
|
| 508 |
+
model = {archetype}(
|
| 509 |
"{output_model_id}",
|
| 510 |
revision=f"refs/pr/{{pr_number}}",
|
| 511 |
backend="onnx",
|
| 512 |
model_kwargs={{"file_name": "model_{onnx_optimization_config}.onnx"}},
|
| 513 |
)
|
| 514 |
+
"""
|
| 515 |
+
+ (
|
| 516 |
+
"""
|
| 517 |
# 2. Inference works as normal
|
| 518 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 519 |
similarities = model.similarity(embeddings, embeddings)
|
| 520 |
"""
|
| 521 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
| 522 |
+
else """
|
| 523 |
+
# 2. Inference works as normal
|
| 524 |
+
predictions = model.predict([
|
| 525 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
| 526 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
| 527 |
+
])
|
| 528 |
+
"""
|
| 529 |
+
),
|
| 530 |
+
)
|
| 531 |
|
| 532 |
|
| 533 |
+
def export_to_openvino(
|
| 534 |
+
model_id: str,
|
| 535 |
+
archetype: Archetype,
|
| 536 |
+
create_pr: bool,
|
| 537 |
+
output_model_id: str,
|
| 538 |
+
token: Optional[str] = None,
|
| 539 |
+
) -> None:
|
| 540 |
if does_file_glob_exist(output_model_id, "**/openvino_model.xml"):
|
| 541 |
raise FileExistsError("The OpenVINO model already exists in the repository")
|
| 542 |
|
| 543 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
| 544 |
+
model = SentenceTransformer(model_id, backend="openvino")
|
| 545 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
| 546 |
+
model = SparseEncoder(model_id, backend="openvino")
|
| 547 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
| 548 |
+
model = CrossEncoder(model_id, backend="openvino")
|
| 549 |
+
else:
|
| 550 |
+
return
|
| 551 |
|
| 552 |
commit_message = "Add exported openvino model 'openvino_model.xml'"
|
| 553 |
|
|
|
|
| 573 |
## Tip:
|
| 574 |
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
| 575 |
```python
|
| 576 |
+
from sentence_transformers import {archetype}
|
| 577 |
|
| 578 |
# TODO: Fill in the PR number
|
| 579 |
pr_number = 2
|
| 580 |
+
model = {archetype}(
|
| 581 |
"{output_model_id}",
|
| 582 |
revision=f"refs/pr/{{pr_number}}",
|
| 583 |
backend="openvino",
|
| 584 |
)
|
| 585 |
|
| 586 |
# Verify that everything works as expected
|
| 587 |
+
{'''embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 588 |
print(embeddings.shape)
|
| 589 |
|
| 590 |
similarities = model.similarity(embeddings, embeddings)
|
| 591 |
+
print(similarities)''' if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER} else
|
| 592 |
+
'''predictions = model.predict([
|
| 593 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
| 594 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
| 595 |
+
])
|
| 596 |
+
print(predictions)'''}
|
| 597 |
```
|
| 598 |
"""
|
| 599 |
|
|
|
|
| 607 |
token=token,
|
| 608 |
)
|
| 609 |
|
| 610 |
+
|
| 611 |
+
def export_to_openvino_snippet(
|
| 612 |
+
model_id: str, archetype: Archetype, create_pr: bool, output_model_id: str
|
| 613 |
+
) -> Tuple[str, str, str]:
|
| 614 |
+
if archetype == Archetype.OTHER:
|
| 615 |
+
return "", "", ""
|
| 616 |
+
|
| 617 |
+
return (
|
| 618 |
+
"""\
|
| 619 |
pip install sentence_transformers[openvino]
|
| 620 |
+
""",
|
| 621 |
+
f"""\
|
| 622 |
+
from sentence_transformers import {archetype}
|
| 623 |
|
| 624 |
# 1. Load the model to be exported with the OpenVINO backend
|
| 625 |
+
model = {archetype}(
|
| 626 |
"{model_id}",
|
| 627 |
backend="openvino",
|
| 628 |
)
|
|
|
|
| 634 |
"{output_model_id}",
|
| 635 |
create_pr=True,
|
| 636 |
)'''}
|
| 637 |
+
""",
|
| 638 |
+
f"""\
|
| 639 |
+
from sentence_transformers import {archetype}
|
| 640 |
|
| 641 |
# 1. Load the model from the Hugging Face Hub
|
| 642 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 643 |
pr_number = 2
|
| 644 |
+
model = {archetype}(
|
| 645 |
"{output_model_id}",
|
| 646 |
revision=f"refs/pr/{{pr_number}}",
|
| 647 |
backend="openvino",
|
| 648 |
)
|
| 649 |
+
"""
|
| 650 |
+
+ (
|
| 651 |
+
"""
|
| 652 |
# 2. Inference works as normal
|
| 653 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 654 |
similarities = model.similarity(embeddings, embeddings)
|
| 655 |
"""
|
| 656 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
| 657 |
+
else """
|
| 658 |
+
# 2. Inference works as normal
|
| 659 |
+
predictions = model.predict([
|
| 660 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
| 661 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
| 662 |
+
])
|
| 663 |
+
"""
|
| 664 |
+
),
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
|
| 668 |
def export_to_openvino_static_quantization(
|
| 669 |
model_id: str,
|
| 670 |
+
archetype: Archetype,
|
| 671 |
create_pr: bool,
|
| 672 |
output_model_id: str,
|
| 673 |
ov_quant_dataset_name: str,
|
|
|
|
| 677 |
ov_quant_dataset_num_samples: int,
|
| 678 |
token: Optional[str] = None,
|
| 679 |
) -> None:
|
| 680 |
+
if does_file_glob_exist(
|
| 681 |
+
output_model_id, "openvino/openvino_model_qint8_quantized.xml"
|
| 682 |
+
):
|
| 683 |
+
raise FileExistsError(
|
| 684 |
+
"The quantized OpenVINO model already exists in the repository"
|
| 685 |
+
)
|
| 686 |
|
| 687 |
+
if archetype == Archetype.SENTENCE_TRANSFORMER:
|
| 688 |
+
model = SentenceTransformer(model_id, backend="openvino")
|
| 689 |
+
elif archetype == Archetype.SPARSE_ENCODER:
|
| 690 |
+
model = SparseEncoder(model_id, backend="openvino")
|
| 691 |
+
elif archetype == Archetype.CROSS_ENCODER:
|
| 692 |
+
model = CrossEncoder(model_id, backend="openvino")
|
| 693 |
+
else:
|
| 694 |
+
return
|
| 695 |
|
| 696 |
if not create_pr and is_new_model(output_model_id):
|
| 697 |
model.push_to_hub(repo_id=output_model_id, token=token)
|
|
|
|
| 716 |
finally:
|
| 717 |
huggingface_hub.upload_folder = original_upload_folder
|
| 718 |
|
| 719 |
+
|
| 720 |
def export_to_openvino_static_quantization_snippet(
|
| 721 |
model_id: str,
|
| 722 |
+
archetype: Archetype,
|
| 723 |
create_pr: bool,
|
| 724 |
output_model_id: str,
|
| 725 |
ov_quant_dataset_name: str,
|
|
|
|
| 727 |
ov_quant_dataset_split: str,
|
| 728 |
ov_quant_dataset_column_name: str,
|
| 729 |
ov_quant_dataset_num_samples: int,
|
| 730 |
+
) -> Tuple[str, str, str]:
|
| 731 |
+
if archetype == Archetype.OTHER:
|
| 732 |
+
return "", "", ""
|
| 733 |
+
|
| 734 |
+
return (
|
| 735 |
+
"""\
|
| 736 |
pip install sentence_transformers[openvino]
|
| 737 |
+
""",
|
| 738 |
+
f"""\
|
| 739 |
from sentence_transformers import (
|
| 740 |
+
{archetype},
|
| 741 |
export_static_quantized_openvino_model,
|
| 742 |
)
|
| 743 |
from optimum.intel import OVQuantizationConfig
|
| 744 |
|
| 745 |
# 1. Load the model to be quantized with the OpenVINO backend
|
| 746 |
+
model = {archetype}(
|
| 747 |
"{model_id}",
|
| 748 |
backend="openvino",
|
| 749 |
)
|
|
|
|
| 762 |
push_to_hub=True,
|
| 763 |
{''' create_pr=True,
|
| 764 |
''' if create_pr else ''})
|
| 765 |
+
""",
|
| 766 |
+
f"""\
|
| 767 |
+
from sentence_transformers import {archetype}
|
| 768 |
|
| 769 |
# 1. Load the model from the Hugging Face Hub
|
| 770 |
# (until merged) Use the `revision` argument to load the model from the PR
|
| 771 |
pr_number = 2
|
| 772 |
+
model = {archetype}(
|
| 773 |
"{output_model_id}",
|
| 774 |
revision=f"refs/pr/{{pr_number}}",
|
| 775 |
backend="openvino",
|
| 776 |
model_kwargs={{"file_name": "openvino_model_qint8_quantized.xml"}},
|
| 777 |
)
|
| 778 |
+
"""
|
| 779 |
+
+ (
|
| 780 |
+
"""
|
| 781 |
# 2. Inference works as normal
|
| 782 |
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
| 783 |
similarities = model.similarity(embeddings, embeddings)
|
| 784 |
"""
|
| 785 |
+
if archetype in {Archetype.SENTENCE_TRANSFORMER, Archetype.SPARSE_ENCODER}
|
| 786 |
+
else """
|
| 787 |
+
# 2. Inference works as normal
|
| 788 |
+
predictions = model.predict([
|
| 789 |
+
["Which planet is known as the Red Planet?", "Mars, known for its reddish appearance, is often referred to as the Red Planet."],
|
| 790 |
+
["Which planet is known as the Red Planet?", "Jupiter, the largest planet in our solar system, has a prominent red spot."],
|
| 791 |
+
])
|
| 792 |
+
"""
|
| 793 |
+
),
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
|
| 797 |
def on_submit(
|
| 798 |
model_id,
|
|
|
|
| 811 |
profile: Optional[gr.OAuthProfile] = None,
|
| 812 |
):
|
| 813 |
if oauth_token is None or profile is None:
|
| 814 |
+
return (
|
| 815 |
+
"Commit or PR url:<br>...",
|
| 816 |
+
inference_snippet,
|
| 817 |
+
gr.Textbox(
|
| 818 |
+
"Please sign in with Hugging Face to use this Space", visible=True
|
| 819 |
+
),
|
| 820 |
+
)
|
| 821 |
|
| 822 |
if not model_id:
|
| 823 |
+
return (
|
| 824 |
+
"Commit or PR url:<br>...",
|
| 825 |
+
inference_snippet,
|
| 826 |
+
gr.Textbox("Please enter a model ID", visible=True),
|
| 827 |
+
)
|
| 828 |
|
| 829 |
if not is_sentence_transformer_model(model_id):
|
| 830 |
+
return (
|
| 831 |
+
"Commit or PR url:<br>...",
|
| 832 |
+
inference_snippet,
|
| 833 |
+
gr.Textbox(
|
| 834 |
+
"The source model must have a Sentence Transformers tag", visible=True
|
| 835 |
+
),
|
| 836 |
+
)
|
| 837 |
|
| 838 |
if output_model_id and "/" not in output_model_id:
|
| 839 |
output_model_id = f"{profile.name}/{output_model_id}"
|
| 840 |
|
| 841 |
output_model_id = output_model_id if not create_pr else model_id
|
| 842 |
+
archetype = get_archetype(model_id)
|
| 843 |
|
| 844 |
try:
|
| 845 |
if backend == Backend.ONNX.value:
|
| 846 |
+
export_to_onnx(
|
| 847 |
+
model_id, archetype, create_pr, output_model_id, token=oauth_token.token
|
| 848 |
+
)
|
| 849 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
| 850 |
export_to_onnx_dynamic_quantization(
|
| 851 |
+
model_id,
|
| 852 |
+
archetype,
|
| 853 |
+
create_pr,
|
| 854 |
+
output_model_id,
|
| 855 |
+
onnx_quantization_config,
|
| 856 |
+
token=oauth_token.token,
|
| 857 |
)
|
| 858 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
| 859 |
export_to_onnx_optimization(
|
| 860 |
+
model_id,
|
| 861 |
+
archetype,
|
| 862 |
+
create_pr,
|
| 863 |
+
output_model_id,
|
| 864 |
+
onnx_optimization_config,
|
| 865 |
+
token=oauth_token.token,
|
| 866 |
)
|
| 867 |
elif backend == Backend.OPENVINO.value:
|
| 868 |
+
export_to_openvino(
|
| 869 |
+
model_id, archetype, create_pr, output_model_id, token=oauth_token.token
|
| 870 |
+
)
|
| 871 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
| 872 |
export_to_openvino_static_quantization(
|
| 873 |
model_id,
|
| 874 |
+
archetype,
|
| 875 |
create_pr,
|
| 876 |
output_model_id,
|
| 877 |
ov_quant_dataset_name,
|
|
|
|
| 882 |
token=oauth_token.token,
|
| 883 |
)
|
| 884 |
except FileExistsError as exc:
|
| 885 |
+
return (
|
| 886 |
+
"Commit or PR url:<br>...",
|
| 887 |
+
inference_snippet,
|
| 888 |
+
gr.Textbox(str(exc), visible=True),
|
| 889 |
+
)
|
| 890 |
|
| 891 |
if create_pr:
|
| 892 |
url, num = get_last_pr(output_model_id)
|
| 893 |
+
return (
|
| 894 |
+
f"PR url:<br>{url}",
|
| 895 |
+
inference_snippet.replace("pr_number = 2", f"pr_number = {num}"),
|
| 896 |
+
gr.Textbox(visible=False),
|
| 897 |
+
)
|
| 898 |
+
|
| 899 |
# Remove the lines that refer to the revision argument
|
| 900 |
lines = inference_snippet.splitlines()
|
| 901 |
del lines[7]
|
| 902 |
del lines[4]
|
| 903 |
del lines[3]
|
| 904 |
inference_snippet = "\n".join(lines)
|
| 905 |
+
return (
|
| 906 |
+
f"Commit url:<br>{get_last_commit(output_model_id)}",
|
| 907 |
+
inference_snippet,
|
| 908 |
+
gr.Textbox(visible=False),
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
|
| 912 |
def on_change(
|
| 913 |
model_id,
|
|
|
|
| 925 |
profile: Optional[gr.OAuthProfile] = None,
|
| 926 |
) -> str:
|
| 927 |
if oauth_token is None or profile is None:
|
| 928 |
+
return (
|
| 929 |
+
"",
|
| 930 |
+
"",
|
| 931 |
+
"",
|
| 932 |
+
gr.Textbox(
|
| 933 |
+
"Please sign in with Hugging Face to use this Space", visible=True
|
| 934 |
+
),
|
| 935 |
+
)
|
| 936 |
|
| 937 |
if not model_id:
|
| 938 |
return "", "", "", gr.Textbox("Please enter a model ID", visible=True)
|
| 939 |
+
|
| 940 |
if output_model_id and "/" not in output_model_id:
|
| 941 |
output_model_id = f"{profile.username}/{output_model_id}"
|
| 942 |
|
| 943 |
output_model_id = output_model_id if not create_pr else model_id
|
| 944 |
+
archetype = get_archetype(model_id)
|
| 945 |
|
| 946 |
if backend == Backend.ONNX.value:
|
| 947 |
+
snippets = export_to_onnx_snippet(
|
| 948 |
+
model_id, archetype, create_pr, output_model_id
|
| 949 |
+
)
|
| 950 |
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
| 951 |
snippets = export_to_onnx_dynamic_quantization_snippet(
|
| 952 |
+
model_id, archetype, create_pr, output_model_id, onnx_quantization_config
|
| 953 |
)
|
| 954 |
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
| 955 |
snippets = export_to_onnx_optimization_snippet(
|
| 956 |
+
model_id, archetype, create_pr, output_model_id, onnx_optimization_config
|
| 957 |
)
|
| 958 |
elif backend == Backend.OPENVINO.value:
|
| 959 |
+
snippets = export_to_openvino_snippet(
|
| 960 |
+
model_id, archetype, create_pr, output_model_id
|
| 961 |
+
)
|
| 962 |
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
| 963 |
snippets = export_to_openvino_static_quantization_snippet(
|
| 964 |
model_id,
|
| 965 |
+
archetype,
|
| 966 |
create_pr,
|
| 967 |
output_model_id,
|
| 968 |
ov_quant_dataset_name,
|
|
|
|
| 973 |
)
|
| 974 |
else:
|
| 975 |
return "", "", "", gr.Textbox("Unexpected backend!", visible=True)
|
| 976 |
+
|
| 977 |
return *snippets, gr.Textbox(visible=False)
|
| 978 |
|
| 979 |
|
|
|
|
| 1000 |
with gr.Row():
|
| 1001 |
# Left Input Column
|
| 1002 |
with gr.Column(scale=2):
|
|
|
|
| 1003 |
gr.Markdown(
|
| 1004 |
value="""\
|
| 1005 |
+
### Export a SentenceTransformer, SparseEncoder, or CrossEncoder model to accelerated backends
|
| 1006 |
|
| 1007 |
+
Sentence Transformers models can be optimized for **faster inference** on CPU and GPU devices by exporting, quantizing, and optimizing them in ONNX and OpenVINO formats.
|
| 1008 |
+
Observe the Speeding up Inference documentation for more information:
|
| 1009 |
+
* [SentenceTransformer > Speeding up Inference](https://sbert.net/docs/sentence_transformer/usage/efficiency.html)
|
| 1010 |
+
* [SparseEncoder > Speeding up Inference](https://sbert.net/docs/sparse_encoder/usage/efficiency.html)
|
| 1011 |
+
* [CrossEncoder > Speeding up Inference](https://sbert.net/docs/cross_encoder/usage/efficiency.html)
|
| 1012 |
""",
|
| 1013 |
label="",
|
| 1014 |
container=True,
|
| 1015 |
)
|
| 1016 |
+
gr.HTML(
|
| 1017 |
+
value="""\
|
| 1018 |
<details><summary>Click to see performance benchmarks</summary>
|
| 1019 |
|
| 1020 |
<table>
|
| 1021 |
<thead>
|
| 1022 |
<tr>
|
| 1023 |
+
<th>SentenceTransformer GPU</th>
|
| 1024 |
+
<th>SentenceTransformer CPU</th>
|
| 1025 |
</tr>
|
| 1026 |
</thead>
|
| 1027 |
<tbody>
|
| 1028 |
<tr>
|
| 1029 |
<td>
|
| 1030 |
+
<img src="https://sbert.net/_images/backends_benchmark_gpu.png" alt="">
|
| 1031 |
</td>
|
| 1032 |
<td>
|
| 1033 |
+
<img src="https://sbert.net/_images/backends_benchmark_cpu.png" alt="">
|
| 1034 |
+
</td>
|
| 1035 |
+
</tr>
|
| 1036 |
+
</tbody>
|
| 1037 |
+
</table>
|
| 1038 |
+
|
| 1039 |
+
<table>
|
| 1040 |
+
<thead>
|
| 1041 |
+
<tr>
|
| 1042 |
+
<th>SparseEncoder GPU</th>
|
| 1043 |
+
<th>SparseEncoder CPU</th>
|
| 1044 |
+
</tr>
|
| 1045 |
+
</thead>
|
| 1046 |
+
<tbody>
|
| 1047 |
+
<tr>
|
| 1048 |
+
<td>
|
| 1049 |
+
<img src="https://sbert.net/_images/se_backends_benchmark_gpu.png" alt="">
|
| 1050 |
+
</td>
|
| 1051 |
+
<td>
|
| 1052 |
+
<img src="https://sbert.net/_images/se_backends_benchmark_cpu.png" alt="">
|
| 1053 |
+
</td>
|
| 1054 |
+
</tr>
|
| 1055 |
+
</tbody>
|
| 1056 |
+
</table>
|
| 1057 |
+
|
| 1058 |
+
<table>
|
| 1059 |
+
<thead>
|
| 1060 |
+
<tr>
|
| 1061 |
+
<th>CrossEncoder GPU</th>
|
| 1062 |
+
<th>CrossEncoder CPU</th>
|
| 1063 |
+
</tr>
|
| 1064 |
+
</thead>
|
| 1065 |
+
<tbody>
|
| 1066 |
+
<tr>
|
| 1067 |
+
<td>
|
| 1068 |
+
<img src="https://sbert.net/_images/ce_backends_benchmark_gpu.png" alt="">
|
| 1069 |
+
</td>
|
| 1070 |
+
<td>
|
| 1071 |
+
<img src="https://sbert.net/_images/ce_backends_benchmark_cpu.png" alt="">
|
| 1072 |
</td>
|
| 1073 |
</tr>
|
| 1074 |
</tbody>
|
|
|
|
| 1083 |
</ul>
|
| 1084 |
|
| 1085 |
</details>
|
| 1086 |
+
"""
|
| 1087 |
+
)
|
| 1088 |
|
| 1089 |
model_id = HuggingfaceHubSearch(
|
| 1090 |
+
label="SentenceTransformer, SparseEncoder, or CrossEncoder model to export",
|
| 1091 |
+
placeholder="Search for SentenceTransformer, SparseEncoder, or CrossEncoder models on Hugging Face",
|
| 1092 |
search_type="model",
|
| 1093 |
)
|
| 1094 |
create_pr = gr.Checkbox(
|
|
|
|
| 1119 |
gr.Markdown(
|
| 1120 |
value="[ONNX Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#onnx)",
|
| 1121 |
container=True,
|
| 1122 |
+
elem_classes=["small-text"],
|
| 1123 |
)
|
| 1124 |
with gr.Group(visible=False) as onnx_dynamic_quantization_group:
|
| 1125 |
onnx_quantization_config = gr.Radio(
|
| 1126 |
choices=["arm64", "avx2", "avx512", "avx512_vnni"],
|
| 1127 |
value="avx512_vnni",
|
| 1128 |
label="Quantization config",
|
| 1129 |
+
info="[ONNX Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-onnx-models)",
|
| 1130 |
)
|
| 1131 |
with gr.Group(visible=False) as onnx_optimization_group:
|
| 1132 |
onnx_optimization_config = gr.Radio(
|
| 1133 |
choices=["O1", "O2", "O3", "O4"],
|
| 1134 |
value="O4",
|
| 1135 |
label="Optimization config",
|
| 1136 |
+
info="[ONNX Optimization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#optimizing-onnx-models)",
|
| 1137 |
)
|
| 1138 |
with gr.Group(visible=False) as openvino_group:
|
| 1139 |
gr.Markdown(
|
| 1140 |
value="[OpenVINO Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#openvino)",
|
| 1141 |
container=True,
|
| 1142 |
+
elem_classes=["small-text"],
|
| 1143 |
)
|
| 1144 |
with gr.Group(visible=False) as openvino_static_quantization_group:
|
| 1145 |
gr.Markdown(
|
| 1146 |
value="[OpenVINO Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-openvino-models)",
|
| 1147 |
container=True,
|
| 1148 |
+
elem_classes=["small-text"],
|
| 1149 |
)
|
| 1150 |
ov_quant_dataset_name = HuggingfaceHubSearch(
|
| 1151 |
value="nyu-mll/glue",
|
images/backends_benchmark_cpu.png
DELETED
|
Binary file (63.2 kB)
|
|
|
images/backends_benchmark_gpu.png
DELETED
|
Binary file (59.9 kB)
|
|
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
sentence_transformers[onnx-gpu,openvino]==
|
| 2 |
onnx==1.16.1
|
| 3 |
https://huggingface.co/spaces/CISCai/chat-template-editor/resolve/08c8e90c53677ae70c66b3d90bf4e63a173b5505/gradio_huggingfacehub_search-0.0.8-py3-none-any.whl
|
| 4 |
-
gradio[oauth]==5.
|
| 5 |
-
huggingface_hub==0.
|
|
|
|
| 1 |
+
sentence_transformers[onnx-gpu,openvino]==5.1.0
|
| 2 |
onnx==1.16.1
|
| 3 |
https://huggingface.co/spaces/CISCai/chat-template-editor/resolve/08c8e90c53677ae70c66b3d90bf4e63a173b5505/gradio_huggingfacehub_search-0.0.8-py3-none-any.whl
|
| 4 |
+
gradio[oauth]==5.42.0
|
| 5 |
+
huggingface_hub==0.34.4
|