Spaces:
Sleeping
Sleeping
refactor, a single process
Browse files
app.py
CHANGED
|
@@ -27,7 +27,11 @@ class Chunker:
|
|
| 27 |
self.split_seq = split_seq
|
| 28 |
self.chunk_len = chunk_len
|
| 29 |
if strategy == "recursive":
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
if strategy == "sequence":
|
| 32 |
self.split = self.seq_splitter
|
| 33 |
if strategy == "constant":
|
|
@@ -51,26 +55,6 @@ def generator(input_ds, input_text_col, chunker):
|
|
| 51 |
yield {input_text_col: chunk}
|
| 52 |
|
| 53 |
|
| 54 |
-
def chunk(input_ds, input_splits, input_text_col, output_ds, strategy, split_seq, chunk_len, private):
|
| 55 |
-
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
| 56 |
-
input_ds = load_dataset(input_ds, split="+".join(input_splits))
|
| 57 |
-
chunker = Chunker(strategy, split_seq, chunk_len)
|
| 58 |
-
|
| 59 |
-
gen_kwargs = {
|
| 60 |
-
"input_ds": input_ds,
|
| 61 |
-
"input_text_col": input_text_col,
|
| 62 |
-
"chunker": chunker
|
| 63 |
-
}
|
| 64 |
-
dataset = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
|
| 65 |
-
dataset.push_to_hub(
|
| 66 |
-
output_ds,
|
| 67 |
-
private=private,
|
| 68 |
-
token=HF_TOKEN
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
logger.info("Done chunking")
|
| 72 |
-
|
| 73 |
-
|
| 74 |
async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
|
| 75 |
async with semaphore:
|
| 76 |
payload = {
|
|
@@ -108,6 +92,7 @@ async def embed_ds(input_ds, tei_url, embed_in_text_col, temp_file):
|
|
| 108 |
|
| 109 |
|
| 110 |
def wake_up_endpoint(url):
|
|
|
|
| 111 |
n_loop = 0
|
| 112 |
while requests.get(
|
| 113 |
url=url,
|
|
@@ -115,30 +100,61 @@ def wake_up_endpoint(url):
|
|
| 115 |
).status_code != 200:
|
| 116 |
time.sleep(2)
|
| 117 |
n_loop += 1
|
| 118 |
-
if n_loop >
|
| 119 |
-
raise
|
| 120 |
logger.info("TEI endpoint is up")
|
| 121 |
|
| 122 |
|
| 123 |
-
def
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
logger.info("Done embedding")
|
| 138 |
|
| 139 |
|
| 140 |
def change_dropdown(choice):
|
| 141 |
-
if choice == "recursive"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
return [
|
| 143 |
gr.Textbox(visible=True),
|
| 144 |
gr.Textbox(visible=False)
|
|
@@ -153,73 +169,52 @@ def change_dropdown(choice):
|
|
| 153 |
with gr.Blocks() as demo:
|
| 154 |
gr.Markdown(
|
| 155 |
"""
|
| 156 |
-
## Chunk
|
| 157 |
"""
|
| 158 |
)
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
dropdown, split_seq, chunk_len, chunk_private]
|
| 203 |
-
)
|
| 204 |
-
|
| 205 |
-
with gr.Tab("Embed"):
|
| 206 |
-
embed_in_ds = gr.Textbox(lines=1, label="Input dataset name")
|
| 207 |
-
with gr.Row():
|
| 208 |
-
embed_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
| 209 |
-
embed_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
| 210 |
-
with gr.Row():
|
| 211 |
-
embed_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
|
| 212 |
-
embed_private = gr.Checkbox(label="Make embedded dataset private")
|
| 213 |
-
tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
|
| 214 |
-
with gr.Row():
|
| 215 |
-
gr.ClearButton(
|
| 216 |
-
components=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
| 217 |
-
)
|
| 218 |
-
embed_btn = gr.Button("Run embed")
|
| 219 |
-
embed_btn.click(
|
| 220 |
-
fn=run_embed,
|
| 221 |
-
inputs=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
|
|
|
|
| 225 |
demo.launch(debug=True)
|
|
|
|
| 27 |
self.split_seq = split_seq
|
| 28 |
self.chunk_len = chunk_len
|
| 29 |
if strategy == "recursive":
|
| 30 |
+
# https://huggingface.co/spaces/m-ric/chunk_visualizer
|
| 31 |
+
self.split = RecursiveCharacterTextSplitter(
|
| 32 |
+
chunk_size=chunk_len,
|
| 33 |
+
separators=[split_seq]
|
| 34 |
+
).split_text
|
| 35 |
if strategy == "sequence":
|
| 36 |
self.split = self.seq_splitter
|
| 37 |
if strategy == "constant":
|
|
|
|
| 55 |
yield {input_text_col: chunk}
|
| 56 |
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
|
| 59 |
async with semaphore:
|
| 60 |
payload = {
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def wake_up_endpoint(url):
|
| 95 |
+
logger.info("Starting up TEI endpoint")
|
| 96 |
n_loop = 0
|
| 97 |
while requests.get(
|
| 98 |
url=url,
|
|
|
|
| 100 |
).status_code != 200:
|
| 101 |
time.sleep(2)
|
| 102 |
n_loop += 1
|
| 103 |
+
if n_loop > 40:
|
| 104 |
+
raise gr.Error("TEI endpoint is unavailable")
|
| 105 |
logger.info("TEI endpoint is up")
|
| 106 |
|
| 107 |
|
| 108 |
+
def chunk_embed(input_ds, input_splits, input_text_col, chunk_out_ds,
|
| 109 |
+
strategy, split_seq, chunk_len, embed_out_ds, tei_url, private):
|
| 110 |
+
gr.Info("Started chunking")
|
| 111 |
+
try:
|
| 112 |
+
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
| 113 |
+
input_ds = load_dataset(input_ds, split="+".join(input_splits), token=HF_TOKEN)
|
| 114 |
+
chunker = Chunker(strategy, split_seq, chunk_len)
|
| 115 |
+
except Exception as e:
|
| 116 |
+
raise gr.Error(str(e))
|
| 117 |
|
| 118 |
+
gen_kwargs = {
|
| 119 |
+
"input_ds": input_ds,
|
| 120 |
+
"input_text_col": input_text_col,
|
| 121 |
+
"chunker": chunker
|
| 122 |
+
}
|
| 123 |
+
chunked_ds = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
|
| 124 |
+
chunked_ds.push_to_hub(
|
| 125 |
+
chunk_out_ds,
|
| 126 |
+
private=private,
|
| 127 |
+
token=HF_TOKEN
|
| 128 |
+
)
|
| 129 |
|
| 130 |
+
gr.Info("Done chunking")
|
| 131 |
+
logger.info("Done chunking")
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
wake_up_endpoint(tei_url)
|
| 135 |
+
with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
|
| 136 |
+
asyncio.run(embed_ds(chunked_ds, tei_url, input_text_col, temp_file))
|
| 137 |
+
|
| 138 |
+
embedded_ds = Dataset.from_json(temp_file.name)
|
| 139 |
+
embedded_ds.push_to_hub(
|
| 140 |
+
embed_out_ds,
|
| 141 |
+
private=private,
|
| 142 |
+
token=HF_TOKEN
|
| 143 |
+
)
|
| 144 |
+
except Exception as e:
|
| 145 |
+
raise gr.Error(str(e))
|
| 146 |
+
|
| 147 |
+
gr.Info("Done embedding")
|
| 148 |
logger.info("Done embedding")
|
| 149 |
|
| 150 |
|
| 151 |
def change_dropdown(choice):
|
| 152 |
+
if choice == "recursive":
|
| 153 |
+
return [
|
| 154 |
+
gr.Textbox(visible=True),
|
| 155 |
+
gr.Textbox(visible=True)
|
| 156 |
+
]
|
| 157 |
+
elif choice == "sequence":
|
| 158 |
return [
|
| 159 |
gr.Textbox(visible=True),
|
| 160 |
gr.Textbox(visible=False)
|
|
|
|
| 169 |
with gr.Blocks() as demo:
|
| 170 |
gr.Markdown(
|
| 171 |
"""
|
| 172 |
+
## Chunk and embed
|
| 173 |
"""
|
| 174 |
)
|
| 175 |
+
input_ds = gr.Textbox(lines=1, label="Input dataset name")
|
| 176 |
+
with gr.Row():
|
| 177 |
+
input_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
| 178 |
+
input_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
| 179 |
+
chunk_out_ds = gr.Textbox(lines=1, label="Chunked dataset name")
|
| 180 |
+
with gr.Row():
|
| 181 |
+
dropdown = gr.Dropdown(
|
| 182 |
+
["recursive", "sequence", "constant"], label="Chunking strategy",
|
| 183 |
+
info="'recursive' uses a Langchain recursive tokenizer, 'sequence' splits texts by a chosen sequence, "
|
| 184 |
+
"'constant' makes chunks of the constant size",
|
| 185 |
+
scale=2
|
| 186 |
+
)
|
| 187 |
+
split_seq = gr.Textbox(
|
| 188 |
+
lines=1,
|
| 189 |
+
interactive=True,
|
| 190 |
+
visible=False,
|
| 191 |
+
label="Sequence",
|
| 192 |
+
info="A text sequence to split on",
|
| 193 |
+
placeholder="\n\n"
|
| 194 |
+
)
|
| 195 |
+
chunk_len = gr.Textbox(
|
| 196 |
+
lines=1,
|
| 197 |
+
interactive=True,
|
| 198 |
+
visible=False,
|
| 199 |
+
label="Length",
|
| 200 |
+
info="The length of chunks to split into in characters",
|
| 201 |
+
placeholder="512"
|
| 202 |
+
)
|
| 203 |
+
dropdown.change(fn=change_dropdown, inputs=dropdown, outputs=[split_seq, chunk_len])
|
| 204 |
+
embed_out_ds = gr.Textbox(lines=1, label="Embedded dataset name")
|
| 205 |
+
private = gr.Checkbox(label="Make output datasets private")
|
| 206 |
+
tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
|
| 207 |
+
with gr.Row():
|
| 208 |
+
clear = gr.ClearButton(
|
| 209 |
+
components=[input_ds, input_splits, input_text_col, chunk_out_ds,
|
| 210 |
+
dropdown, split_seq, chunk_len, embed_out_ds, tei_url, private]
|
| 211 |
+
)
|
| 212 |
+
embed_btn = gr.Button("Submit")
|
| 213 |
+
embed_btn.click(
|
| 214 |
+
fn=chunk_embed,
|
| 215 |
+
inputs=[input_ds, input_splits, input_text_col, chunk_out_ds,
|
| 216 |
+
dropdown, split_seq, chunk_len, embed_out_ds, tei_url, private]
|
| 217 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
+
demo.queue()
|
| 220 |
demo.launch(debug=True)
|