Spaces:
Sleeping
Sleeping
initial
Browse files
app.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import time
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import tempfile
|
| 8 |
+
import requests
|
| 9 |
+
import logging
|
| 10 |
+
|
| 11 |
+
from aiohttp import ClientSession
|
| 12 |
+
from langchain.text_splitter import SpacyTextSplitter
|
| 13 |
+
from datasets import Dataset, load_dataset
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
from tqdm.asyncio import tqdm_asyncio
|
| 16 |
+
|
| 17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 18 |
+
SEMAPHORE_BOUND = os.getenv("SEMAPHORE_BOUND", "5")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
logging.basicConfig(level=logging.INFO)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Chunker:
|
| 26 |
+
def __init__(self, strategy, split_seq=".", chunk_len=512):
|
| 27 |
+
self.split_seq = split_seq
|
| 28 |
+
self.chunk_len = chunk_len
|
| 29 |
+
if strategy == "spacy":
|
| 30 |
+
self.split = SpacyTextSplitter().split_text
|
| 31 |
+
if strategy == "sequence":
|
| 32 |
+
self.split = self.seq_splitter
|
| 33 |
+
if strategy == "constant":
|
| 34 |
+
self.split = self.const_splitter
|
| 35 |
+
|
| 36 |
+
def seq_splitter(self, text):
|
| 37 |
+
return text.split(self.split_seq)
|
| 38 |
+
|
| 39 |
+
def const_splitter(self, text):
|
| 40 |
+
return [
|
| 41 |
+
text[i * self.chunk_len:(i + 1) * self.chunk_len]
|
| 42 |
+
for i in range(int(np.ceil(len(text) / self.chunk_len)))
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def generator(input_ds, input_text_col, chunker):
|
| 47 |
+
for i in tqdm(range(len(input_ds))):
|
| 48 |
+
chunks = chunker.split(input_ds[i][input_text_col])
|
| 49 |
+
for chunk in chunks:
|
| 50 |
+
if chunk:
|
| 51 |
+
yield {input_text_col: chunk}
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def chunk(input_ds, input_splits, input_text_col, output_ds, strategy, split_seq, chunk_len, private):
|
| 55 |
+
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
| 56 |
+
input_ds = load_dataset(input_ds, split="+".join(input_splits))
|
| 57 |
+
chunker = Chunker(strategy, split_seq, chunk_len)
|
| 58 |
+
|
| 59 |
+
gen_kwargs = {
|
| 60 |
+
"input_ds": input_ds,
|
| 61 |
+
"input_text_col": input_text_col,
|
| 62 |
+
"chunker": chunker
|
| 63 |
+
}
|
| 64 |
+
dataset = Dataset.from_generator(generator, gen_kwargs=gen_kwargs)
|
| 65 |
+
dataset.push_to_hub(
|
| 66 |
+
output_ds,
|
| 67 |
+
private=private,
|
| 68 |
+
token=HF_TOKEN
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
logger.info("Done chunking")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
async def embed_sent(sentence, embed_in_text_col, semaphore, tei_url, tmp_file):
|
| 75 |
+
async with semaphore:
|
| 76 |
+
payload = {
|
| 77 |
+
"inputs": sentence,
|
| 78 |
+
"truncate": True
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
async with ClientSession(
|
| 82 |
+
headers={
|
| 83 |
+
"Content-Type": "application/json",
|
| 84 |
+
"Authorization": f"Bearer {HF_TOKEN}"
|
| 85 |
+
}
|
| 86 |
+
) as session:
|
| 87 |
+
async with session.post(tei_url, json=payload) as resp:
|
| 88 |
+
if resp.status != 200:
|
| 89 |
+
raise RuntimeError(await resp.text())
|
| 90 |
+
result = await resp.json()
|
| 91 |
+
|
| 92 |
+
tmp_file.write(
|
| 93 |
+
json.dumps({"vector": result[0], embed_in_text_col: sentence}) + "\n"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
async def embed_ds(input_ds, tei_url, embed_in_text_col, temp_file):
|
| 98 |
+
semaphore = asyncio.BoundedSemaphore(int(SEMAPHORE_BOUND))
|
| 99 |
+
jobs = [
|
| 100 |
+
asyncio.create_task(embed_sent(row[embed_in_text_col], embed_in_text_col, semaphore, tei_url, temp_file))
|
| 101 |
+
for row in input_ds if row[embed_in_text_col].strip()
|
| 102 |
+
]
|
| 103 |
+
logger.info(f"num chunks to embed: {len(jobs)}")
|
| 104 |
+
|
| 105 |
+
tic = time.time()
|
| 106 |
+
await tqdm_asyncio.gather(*jobs)
|
| 107 |
+
logger.info(f"embed time: {time.time() - tic}")
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def wake_up_endpoint(url):
|
| 111 |
+
n_loop = 0
|
| 112 |
+
while requests.get(
|
| 113 |
+
url=url,
|
| 114 |
+
headers={"Authorization": f"Bearer {HF_TOKEN}"}
|
| 115 |
+
).status_code != 200:
|
| 116 |
+
time.sleep(2)
|
| 117 |
+
n_loop += 1
|
| 118 |
+
if n_loop > 30:
|
| 119 |
+
raise TimeoutError("TEI endpoint is unavailable")
|
| 120 |
+
logger.info("TEI endpoint is up")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def run_embed(input_ds, input_splits, embed_in_text_col, output_ds, tei_url, private):
|
| 124 |
+
wake_up_endpoint(tei_url)
|
| 125 |
+
input_splits = [spl.strip() for spl in input_splits.split(",") if spl]
|
| 126 |
+
input_ds = load_dataset(input_ds, split="+".join(input_splits))
|
| 127 |
+
with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
|
| 128 |
+
asyncio.run(embed_ds(input_ds, tei_url, embed_in_text_col, temp_file))
|
| 129 |
+
|
| 130 |
+
dataset = Dataset.from_json(temp_file.name)
|
| 131 |
+
dataset.push_to_hub(
|
| 132 |
+
output_ds,
|
| 133 |
+
private=private,
|
| 134 |
+
token=HF_TOKEN
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
logger.info("Done embedding")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def change_dropdown(choice):
|
| 141 |
+
if choice == "spacy" or choice == "sequence":
|
| 142 |
+
return [
|
| 143 |
+
gr.Textbox(visible=True),
|
| 144 |
+
gr.Textbox(visible=False)
|
| 145 |
+
]
|
| 146 |
+
else:
|
| 147 |
+
return [
|
| 148 |
+
gr.Textbox(visible=False),
|
| 149 |
+
gr.Textbox(visible=True)
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
with gr.Blocks() as demo:
|
| 154 |
+
gr.Markdown(
|
| 155 |
+
"""
|
| 156 |
+
## Chunk your dataset before embedding
|
| 157 |
+
"""
|
| 158 |
+
)
|
| 159 |
+
with gr.Tab("Chunk"):
|
| 160 |
+
chunk_in_ds = gr.Textbox(lines=1, label="Input dataset name")
|
| 161 |
+
with gr.Row():
|
| 162 |
+
chunk_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
| 163 |
+
chunk_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
| 164 |
+
with gr.Row():
|
| 165 |
+
chunk_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
|
| 166 |
+
chunk_private = gr.Checkbox(label="Make chunked dataset private")
|
| 167 |
+
with gr.Row():
|
| 168 |
+
dropdown = gr.Dropdown(
|
| 169 |
+
["spacy", "sequence", "constant"], label="Chunking strategy",
|
| 170 |
+
info="'spacy' uses a Spacy tokenizer, 'sequence' splits texts by a chosen sequence, "
|
| 171 |
+
"'constant' makes chunks of the constant size",
|
| 172 |
+
scale=2
|
| 173 |
+
)
|
| 174 |
+
split_seq = gr.Textbox(
|
| 175 |
+
lines=1,
|
| 176 |
+
interactive=True,
|
| 177 |
+
visible=False,
|
| 178 |
+
label="Sequence",
|
| 179 |
+
info="A text sequence to split on",
|
| 180 |
+
placeholder="\n\n"
|
| 181 |
+
)
|
| 182 |
+
chunk_len = gr.Textbox(
|
| 183 |
+
lines=1,
|
| 184 |
+
interactive=True,
|
| 185 |
+
visible=False,
|
| 186 |
+
label="Length",
|
| 187 |
+
info="The length of chunks to split into",
|
| 188 |
+
placeholder="512"
|
| 189 |
+
)
|
| 190 |
+
dropdown.change(fn=change_dropdown, inputs=dropdown, outputs=[split_seq, chunk_len])
|
| 191 |
+
with gr.Row():
|
| 192 |
+
gr.ClearButton(
|
| 193 |
+
components=[
|
| 194 |
+
chunk_in_ds, chunk_in_splits, chunk_in_text_col, chunk_out_ds,
|
| 195 |
+
dropdown, split_seq, chunk_len, chunk_private
|
| 196 |
+
]
|
| 197 |
+
)
|
| 198 |
+
chunk_btn = gr.Button("Chunk")
|
| 199 |
+
chunk_btn.click(
|
| 200 |
+
fn=chunk,
|
| 201 |
+
inputs=[chunk_in_ds, chunk_in_splits, chunk_in_text_col, chunk_out_ds,
|
| 202 |
+
dropdown, split_seq, chunk_len, chunk_private]
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
with gr.Tab("Embed"):
|
| 206 |
+
embed_in_ds = gr.Textbox(lines=1, label="Input dataset name")
|
| 207 |
+
with gr.Row():
|
| 208 |
+
embed_in_splits = gr.Textbox(lines=1, label="Input dataset splits", placeholder="train, test")
|
| 209 |
+
embed_in_text_col = gr.Textbox(lines=1, label="Input text column name", placeholder="text")
|
| 210 |
+
with gr.Row():
|
| 211 |
+
embed_out_ds = gr.Textbox(lines=1, label="Output dataset name", scale=6)
|
| 212 |
+
embed_private = gr.Checkbox(label="Make embedded dataset private")
|
| 213 |
+
tei_url = gr.Textbox(lines=1, label="TEI endpoint url")
|
| 214 |
+
with gr.Row():
|
| 215 |
+
gr.ClearButton(
|
| 216 |
+
components=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
| 217 |
+
)
|
| 218 |
+
embed_btn = gr.Button("Run embed")
|
| 219 |
+
embed_btn.click(
|
| 220 |
+
fn=run_embed,
|
| 221 |
+
inputs=[embed_in_ds, embed_in_splits, embed_in_text_col, embed_out_ds, tei_url, embed_private]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
demo.launch(debug=True)
|